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ABSTRACT 

Currently, small unmanned aerial vehicles developed by NPS have been able to 

locate and track stationary and moving targets on the ground. New methods of continuous 

target tracking are always being developed to improve speed and accuracy, ultimately 

aiding the user of the system. This thesis describes one such method, utilizing an open 

loop filter as well as an external correction source: Perspective View Nascent 

Technologies (PVNT). While the PVNT correction can theoretically improve the 

accuracy from 20-30 meters to 1-2 meters, it does have a disadvantage in that the target 

position updates are delayed anywhere from 1-10 seconds. In order to account for the 

delay, an asynchronous filter is used to update the target position data given the external 

position correction from PVNT. Two cases have been tested including the general filter 

and one that utilizes a road model in the calculations. While an earlier thesis developed 

the basic simulation for the system, this thesis discusses improvements and corrections to 

the simulation model as well as the necessary steps for real-time implementation. 
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I. INTRODUCTION  

A. OVERVIEW 

The goal of the work in this thesis is to contribute to continuous improvements 

that are being made in the area of vision-based target tracking and motion estimation. 

Changes to the current system allow the entire process to be faster, more accurate, and 

more user-friendly. Improvements to the technology can be simulated using computer 

programs such as MATLAB and Simulink, implemented, and then field tested during 

scenarios run by NPS during the Tactical Network Topology (TNT) sessions. Ultimately, 

the systems developed here can make their way to military use in surveillance and 

reconnaissance missions. Concepts examined in this thesis include the development and 

implementation non real-time and real-time target motion estimation systems as well as 

asynchronous target tracking filters with and without road following capabilities. 

B. BACKGROUND 

Several important tools are discussed that play prominent roles in the developed 

systems in this thesis. The PVNT position update system is described first, followed by 

the background on the asynchronous constant gain Kalman filter. 

1. Perspective View Nascent Technologies (PVNT) 

One of the problems with incorporating detailed terrain maps into real-time 

systems is the large amount of required data storage and equally large amount of 

necessary computing power needed to deal with the loading and retrieval of map sections. 

Developed by Dr. Wolfgang Baer, the PVNT system offers a low-cost alternative 

available on a personal computer. The PVNT system begins with terrain data collected by 

the National Imagery and Mapping Agency (NIMA) and contains tools that allow updates 

to be included from local measurement devices and other sensors [1]. The inclusion of 

this new data results in a more accurate terrain mapping system than can be more 

efficiently updated to reflect terrain variations rather than creating entirely new maps. 
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Another major advantage PVNT has over other scene-visualization programs is 

that the terrain data are stored using raster formats (pixels) instead of using a polygon 

database [1]. This makes implementation of the system using PVNT combined with 

remote sensor arrays in real-time much more practical. 

Tests conducted at Camp Roberts, CA, depict how PVNT works hand-in-hand 

with a vision-based target tracking system. Initially, the target is acquired and the gimbal-

mounted camera passes data to image processing software. Then, open-loop, non-linear 

filters are able to estimate the target position and resulting velocity. After around 20 

seconds of tracking, the accuracy for this portion of the system is within about 10-20 

meters. The PVNT software then compares data coming in from GPS, camera angle 

values, and the images from the UAV camera to the terrain database for the area. Since 

the accuracy of the database has roughly a one meter resolution, the accuracy of the 

position update from PVNT can be ten times more accurate than the non-linear filter 

estimation. However, because of the multiple data inputs and necessary image 

comparison between the camera and terrain database, the required processing time results 

in a delay up to ten seconds before the position update is delivered to the system [6]. 

2. Asynchronous Constant Gain Kalman Filter 

It is in target motion estimation that the Kalman filter can be employed. One of 

the reasons that the Kalman filter works well with target tracking applications is its 

ability to compare and integrate data from multiple sensors (such as a position update 

with estimated target velocity and estimated position) to give the most accurate result. 

However, standard Kalman filters are hindered by the fact that they must have evenly-

spaced data inputs and updates for maximum effectiveness. The filter runs into accuracy 

problems when data arrives at different sampling rates or delayed times. 

The asynchronous constant gain Kalman filter was developed because of the need 

for an accurate estimation tool in a system with delayed data inputs. It is the preferred 

filter to ensure better system robustness and overall result accuracy because the 

asynchronous version of the filter is able to accept out of synchronization data entries 

from sensors. Thus, the asynchronous constant gain Kalman filter is a better match for 
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this target tracking system since the data from the PVNT update is delayed anywhere 

from one to ten seconds before being entered into the filter [6]. 

C. THESIS DESCRIPTION 

Chapter I presents a general overview of the work of the thesis with respect to 

UAV target tracking capabilities as well as background for two of the main tools utilized 

in the thesis: the PVNT update system and asynchronous constant gain Kalman filter. The 

next chapter will outline, step-by-step, the process that takes place during target motion 

estimation with and without position updates. The chapter also discusses the general and 

road following filters; the two different styles of filters that are employed in the real- and 

non real-time models. Chapter III will briefly review the current non real-time general 

filter model for target tracking presented in an earlier thesis and then develop a road 

following version of the model for non real-time simulation in Simulink. Additionally, 

the chapter will discuss the steps needed to convert the non real-time models into real-

time models along with the actual modeling of the real-time general and road following 

filters in Simulink. Chapter IV will go over the system parameters and actual simulation 

of the non real-time and real-time models. While the non real-time road following model 

will be tested using a single road model to ensure proper function, the real-time general 

and road following models will be tested with numerous simulated roads and varying 

input errors. All of the necessary results will follow in the chapter along with 

explanations for the response of the system to different scenarios. Finally, Chapter V will 

present the conclusions from the thesis results and recommendations for future work in 

the field of study. 
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II. SYSTEM STRUCTURE 

This chapter provides flow charts and diagrams describing the processes that take 

place in the filter operations with and without PVNT updates. The final section also 

explains the objectives for the thesis. 

A.  SEQUENCE OF OPERATION 

The first task is to organize the order of the processes within the target tracking 

system. Then, the improved system with the general linear filter must be altered to 

incorporate the PVNT position updates in parallel with the normal operation. 

1. Linear Filter with PVNT Update 

 
Figure 1.   Linear filtering with PVNT update 
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Figure 1 shows the asynchronous filtering system with the addition of the PVNT 

position update. After the necessary image processing by the PVNT software, the new 

estimated target position is fed into the asynchronous constant gain Kalman filter. The 

asynchronous filter then performs the required calculations, rewriting over the data 

previously stored during the delay, and outputs a new estimated target position to the 

original non-linear filter. Figure 2 below shows how the PVNT processing and 

asynchronous constant gain Kalman filter relates to the time interval for the system. 

 
Figure 2.   PVNT processing and Kalman filtering with respect to time 

 
 

B. GENERAL AND ROAD FOLLOWING FILTER DIFFERENCES 

The two different style filters tested in this thesis are the general and road 

following filters. Both filters receive PVNT updates and perform target motion estimation 

along road models during the simulations. The difference, however, is that the road 

following filter uses the road model equations in the target motion estimation calculations 

while the general filter does not. This allows the x, y, z coordinates used by the general 

filter model to be simplified in the road following model by a road parameter, ρ . This 

concept is discussed in greater detail in Chapter III. 
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The figure below depicts the effects of the road following parameter by 

comparing the position estimates of an open loop (OL) filter and an asynchronous road 

following filter (AF) with PVNT along a sample road profile. The filter estimates are 

identical during straight portions of the road, but the road following filter provides much 

better position estimates during areas of greater curvature. The position error is due to 

velocity estimation error, but the estimate still lies along the road profile. 

 
Figure 3.   Target Estimation Comparison for Open Loop and Road Following 

Filters 
 

C. OBJECTIVES 

While the basic non real-time filter design is discussed in the master’s thesis in 

Reference 6, numerous improvements and corrections were needed to make the non real-

time road following filter perform correctly. The generation and storage of the PVNT 

update will be changed and the asynchronous constant gain Kalman filter will be 

modeled in Simulink. Additionally, the non real-time general and road following filter 

models will be converted into systems capable of real-time implementation. The two real-

time filter systems will also be extensively simulated and the results analyzed to 

determine conditions of peak and poor performance. 
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III. MODELING 

This chapter details the modeling process for the non real-time and real-time 

systems. Included in the sections are models for the general and road following filters for 

each style system as well as development of the road equations. The process of 

converting the non real-time models into models that can be implemented in real-time 

systems is also cited with major focus placed on the S-function and its capabilities. 

A. NON REAL-TIME MODELING 

Before models can be implemented in a real-time system, non real-time models 

had to be produced. These non real-time models serve as a starting point for the 

development of the real-time filter. 

1. General Filter 

The general asynchronous filter and MATLAB code is found in Reference 6 and 

models the general target tracking filter incorporating a delayed PVNT update. Many of 

the components for the road following version of the filter are similar and will be 

discussed in the next section.  

2. Road Following Filter with Separate Model File Integration 

The main addition to the road following asynchronous filter is the parameter ρ, 

which defines the road along which the target is moving. Since the target plane is 

assumed to be two dimensional, ρ relates to the x and y coordinates of the target while z 

relates to local altitude. The road following asynchronous filter was corrected from 

Reference 6 due to errors in the MATLAB code concerning data storage and retrieval. 

Portions of the Simulink model were also adjusted to correctly generate and pass on the 

PVNT position update to later tasks in the system. The updated road following filter 

system is shown in Figure 4. 
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Figure 4.   Road following asynchronous filter  

 

Next, the Simulink diagram is broken down with a description of the function of 

each component in the overall system. 

a. True Target Motion with Road Following Characteristics 

 
Figure 5.   True target position and velocity generation with road following 
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The non real-time system begins with the target of constant velocity and 

integrating to calculate ρ. The new ρ value is then inputted into a MATLAB function 

block that calculates x, y, and z target position based on a predetermined equation for the 

road. For the preliminary simulation tests, the equation for the road based on the 

parameter ρ was taken from Reference 6: 

 
0

74.9025.00.0000192 y 23

=
+−=

=

z

x
ρρρ

ρ

  (1)  [Ref. 6] 

The above system of equations produces a road profile that is depicted in 

the next figure. 

 
Figure 6.   Simulated Road Profile [After Ref. 6] 

 
 

This target data along with the ρ values are stored for later use as the 

simulated PVNT update. For the Simulink model, it is more practical to assume that the 

PVNT estimate, with one to two meter accuracy, can be simulated by taking an actual 

target position from the true target model at time τ instead of trying to run PVNT 

software. 
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b. PVNT Model 

 
Figure 7.   PVNT update generator 

 

Figure 7 depicts the PVNT update block and its components for the non 

real-time road following model. The block receives and takes in the true target position 

and velocity from the target model along with the system time and a random PVNT 

update delay. The fifth input is an oscillating step signal that indicates when the PVNT 

update is active (signaling an update is ready to be sent to the asynchronous constant gain 

Kalman filter). Additionally, a PVNT input error can be included in the system to 

simulate the expected one to two meter accuracy of the device. 

c. Optimization Function 

The optimization function block is used to determine the parameter ρ, and 

was not changed from the earlier thesis. The method of optimization that is used in the 

non real-time road following filter simply finds ρ  that minimizes the distance from the 

inputted PVNT position update to the road. Once the minimum distance over a maximum 

range is found, the corresponding ρ value for the x and y road coordinates is passed on to 

the asynchronous filter. 
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d. Asynchronous Filter 

The asynchronous filter portion of the diagram has multiple triggered 

subsystems. 

 
Figure 8.   Asynchronous filter – Subsystem 1 

 

The first subsystem calculates time τ once given the current system time t 

and the PVNT delay time. The time τ is then passed on to the second subsystem along 

with the PVNT delay and the PVNT update *ρ . 

 
Figure 9.   Asynchronous filter – Subsystem 2 
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Figure 9 shows the data being passed through a mux block and into a 

MATLAB function block, which outputs the estimated position (
^
p ) and velocity (

^
v ) 

data for the target at time t. It is important to note that this subsystem only runs when the 

PVNT update is present. The MATLAB function block refers to a function written in 

MATLAB code that actually performs the asynchronous double integration. The filter is 

actually contained in a separate Simulink model file and called by the MATLAB 

function. 

 
Figure 10.   Separate Simulink model containing asynchronous filter 

 

The filter operates independently of the time of the overall system, 

allowing it to be asynchronous. The MATLAB code stores the new estimated position 

and velocity data as the asynchronous filter integrates from time τ to t and outputs the last 

position and velocity values to initialize the open-loop filter. While the asynchronous 

filter for the target tracking system without road following capabilities must integrate 
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variables for velocity (in the x, y, and z directions) and position (x, y, z), the asynchronous 

filter for the road following system only integrates the scalar velocity and road 

parameter, ρ . Since the road equation is known before tracking begins, the ρ  value is 

easily converted into x, y, and z coordinates. 

e. Open-Loop Filter 

 
Figure 11.   Single integration open-loop filter 

 

The final step in the simulation is the open-loop filter subsystem. This 

block essentially performs a dead-reckoning position calculation based on the inputted 

estimated velocity and contains a single integrator that operates during the periods of 

time with no PVNT update. 

3. Road Following Filter with Numerical Euler Integration 

The main difference between the road following filter developed in Section 2 

above and the one described in Section 3 of this chapter is the conversion of the Simulink 

model file containing the asynchronous filter in Figure 10 to a set of numerical equations. 

These equations are used for forward Euler integration, allowing the system to quickly 

determine position estimates from timeτ  to time t (see Figure 2). It is necessary to 
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implement the integration model in MATLAB code to decrease computation time during 

simulation. Additionally, a real-time system cannot operate properly using multiple 

Simulink models. 

a. Integration Equations 

In order to implement double integrator into MATLAB code, the diagram 

must be represented numerically. By taking the asynchronous filter model from Figure 

10, removing the scope blocks, and adding state variables before and after the integrator 

blocks, a set of equations can be developed. 

 
Figure 12.   Asynchronous filter model with state variables 

 

Using the state variables shown in Figure 12, the state equations are as 

follows: 
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These state equations for Euler integration can easily be implemented in 

MATLAB code utilizing the data already stored in arrays and loops within the script.  

B. REAL-TIME MODELING 

The non real-time models can be used as a starting point for developing the 

general and road following models that can be implemented in real-time. Problems 

encountered by shifting to a real-time model and their solutions are first discussed 

followed by the actual design of the general and road following real-time models. 

1. Problems 

Many of the problems encountered during the conversion from a non real-time to 

real-time model dealt with synchronized data storage and retrieval. The computation 

speed of different methods of modeling the system is also analyzed and discussed. 

a. Data Storage 

One of the problems that arose when modifying the MATLAB code to 

allow the system to run in real-time was the method of data storage. The simulation of the 

system that had been created in Simulink simply wrote all of the data to arrays in the 

function code and by using “to workspace” blocks in the simulation model. There is no 

problem with this method when the system only runs for 180 seconds, as in the tests for 

the non real-time road following model in Chapter IV. A system that is actually 

implemented in hardware, however, may run from just a few minutes up to several hours. 

Hours of run time can result in massive amounts of data from the programs being 

executed. Additionally, it is not practical to increase the step size of the program to 

reduce the amount of data collected as accuracy will suffer as a result of the decreased 

number of inputs. 

The solution, in the case of this system, is to only hold the minimum 

amount of data required before releasing it. The next decision to be made is how much 

data actually needs to be stored. The system being studied has a delay associated with the 

PVNT processing time, assumed to be anywhere from one to ten seconds. Once the 
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PVNT position update is calculated for time τ (equal to the current time, t, minus the 

PVNT delay), it is compared to the estimated target position at time τ. This is the first 

portion of the asynchronous filter implemented through the Euler integration embedded 

in the MATLAB function. Therefore, the minimum amount of data that can be stored 

without affecting system function is the maximum PVNT delay divided by the step size 

or, 

dT
t

dT
delay τ−

=max      (3) 

From this equation, the code can be adjusted to allocate only enough data 

to account for the maximum expected PVNT delay. The resulting program will help 

avoid data overflow and storing huge amounts of data over prolonged run times. 

b.  The S-Function 

The next problem is how to simulate the system with the necessary speed 

for real-time implementation. The solution to the dilemma is found in the S-function 

block in Simulink. The S-function block is linked to an S-Function file containing C code 

(in this case) that can carry out all the necessary tasks of a system with the speed needed 

for real-time simulation. Therefore, every MATLAB function shown in the earlier 

sections of this chapter such as the asynchronous filter, optimization, and data storage 

functions needed to be implemented in C code. After the code compiles without error, it 

is converted into a MATLAB .mex file, which allows it to be used by the Simulink 

model. The S-function can receive inputs, send out outputs, and make function calls, 

combining the relative simplicity of a Simulink model with the speed and capabilities of 

C code.  

c.  Arrays vs. Buffers 

A problem encountered with the conversion process from MATLAB code 

to C code involved the fact that the size of an array in MATLAB does not have to be 

preset, but an array in C code does. The maximum size of an array in C code is set by 

using an integer to define the number of data storage spaces. Unfortunately, this means 
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that global variable or a parameter cannot be used to initialize the maximum array size. 

Therefore, the method of data storage in C code would have to be different from the 

methods used in MATLAB code. Since the delays of the PVNT update vary anywhere 

from one to ten seconds and the code had to be robust enough to handle a larger delay if 

the user required it, an array-based data storage system would not be practical in C code. 

While arrays are typically simpler to write code-wise, overflow of an array can cause 

errors that may prematurely end the simulation. Another problem that was encountered 

by using an array is that the data stored inside an array is reset following each iteration of 

the program. Thus, the program is not able to access information stored during previous 

runs, which is necessary for the asynchronous Euler integration process. As a result of 

these shortfalls, it was determined that another means of storing the accumulated data 

was needed. 

While several means of data storage were tested, the only method that 

overcame the disadvantages of arrays and met all the requirements needed for data 

storage was to use buffers. While the size of a buffer does need to be preset, parameters 

in the S-function can be used to perform the task, even though they couldn’t be used to 

preset the sizes of arrays. This means that the user does not have to open the actual C 

program and change lines of code if the maximum expected PVNT delay were to change. 

The user can simply change one number in the parameter input of the S-function block 

and have the maximum buffer size reset automatically by the code. 

Additionally, buffers are a type of persistent memory, meaning that the 

data stored inside remains saved until a command to clear the buffer is given. Therefore, 

the data from the open loop filter can be stored in buffers and recalled at the start of the 

asynchronous Euler integration. While the coding of the buffers is more involved than 

setting up a group of arrays, the requirements of the system make buffers the ideal 

method of data storage. 

2. General Filter 

Since a model or equation for the road may not be known ahead of time in most 

real-time situations, the general non real-time filter simulation from the beginning of this 
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chapter was first prepared for implementation in the S-function. The asynchronous filter 

portion along with all data storage from the asynchronous filter needed to be 

implemented in C code and moved inside the S-function. 

a.  The True Target Model and PVNT Update Generator 

The simulation of the real-time system will not use an actual tracked 

ground target, so a model needs to be used during the testing process.  

 
Figure 13.   True target model and PVNT update generator for general filter 
 
 

The diagram in Simulink is nearly identical to the one used in Figure 5 in 

the system simulation from earlier in the chapter. The target model begins with a velocity 

that is integrated and then sent to target position generating subsystem to determine the 

target position coordinates. The subsystem defines a preset road model on which the  
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target will travel. In the case of this system, only the x and y coordinates are used for the 

2-D target tracking, while the z coordinate is set to zero, allowing it to be included for 

possible future use. 

Additionally, the true target model doubles as a generator for the PVNT 

position updates. The outputs from the position generation subsystem are utilized as a 

portion of the PVNT update as well. Since the assumed accuracy of the position update is 

1± meter, the model incorporates this deviation by means of a random number generator 

(with a mean value of zero and a range of 1± ) through a summing junction. The modified 

PVNT position update is passed to the S-function for later use. 

A small difference in the true target model from the original non real-time 

subsystem block shown in Figure 5 is the removal of all continuous state blocks. The 

integrator block is one such tool that had to be altered during the transition to a system 

capable of real-time calculations. Since samples are only taken every dT seconds by the 

system during simulation and a fixed step solver is used by the Simulink model, only 

discrete state blocks can be used. Therefore, every continuous time integrator block used 

in the true target model and filter subsystems had to be swapped with discrete state 

integrators. 

 
Figure 14.   PVNT update signal subsystem 
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Based on previous information regarding the PVNT computation time, it 

is known that the delay associated with the position update can range from one to ten 

seconds. Therefore, a simple pulse generator could not be used due to the need for a 

varying delay time. The PVNT update subsystem shown above solves the problem by 

offering a pseudo-random sequence covering the full range of delay times. 

b.  The Open-Loop Filter 

During periods of operation when a PVNT update is not present, the open 

loop, single integration filter performs the dead reckoning calculations for target position. 

Unlike its road following counterpart, the general filter system does not have a ρ value 

based on the known road model with which it can simplify calculations. Therefore, each 

individual coordinate has to be passed through its own open loop integrator in order to 

compute the updated position. So, even though all the open loop filters are connected to 

the same reset trigger, the x, y, and z open loop filters receive their own respective 

position and velocity initial conditions. The entire subsystem is contained in a function 

call block that can be initiated by the S-function. 
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c.  Overall Real-Time Design and Function with S-Function Block 

 
Figure 15.   General filter real-time model 

 
 

There are more inputs and outputs to the individual subsystem blocks 

without the added simplicity of the ρ  road equation variable. The real-time general filter 

model really begins with the true target model subsystem and PVNT update signal 

blocks. The PVNT update signal is a repeating sequence that simulates a varying PVNT 

update delay from one to ten seconds. Until the signal goes high, indicating a PVNT 

position update is available; the data from the PVNT update portion of the true target 

model is ignored. The last known x, y, and z coordinates and velocities are passed to the 

open loop filter where they are sent through the single integration system. The updated 

positions are then fed back into the S-function to be stored in the proper buffers before 

repeating the process. 
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However, upon the receipt of a PVNT update, the path of data slightly 

changes. The position update for time τ  arrives at the inputs of the S-function block and 

is taken into the C code. Then, the time from the last PVNT update is calculated (delay) 

and used to determine the value for timeτ . Using the persistent memory characteristic of 

the buffers, the estimated position of the target at time τ  is then compared to the PVNT 

update and sent to a C function that performs Euler integration up to the current time t, 

storing the new position and velocity data in buffers after each iteration. The final 

estimated position and velocity data from the Euler integration function for time t are 

passed on as the initial conditions for the open loop filter subsystem. The integrator reset 

is also triggered before the open loop filter calculations continue until the next PVNT 

position update. 

During the model simulation, a storage block is used to send all the 

pertinent data to a .mat file. A separate script file in MATLAB loads the .mat file and 

automatically plots the actual target data versus the estimated target data from the filter. 

The data storage section of the model diagram is for testing purposes only as this process 

would be altered in an actual real-time simulation to avoid errors associated with storing 

of the immense amount of data. 

3. Road Following Filter 

Compared with the general filter design described above, the real-time road 

following filter design was greatly simplified by the pre-known road equation. This 

equation allowed the x, y, and z position coordinates to be combined into one 

parameter: ρ . Not only did the road following model appear less cluttered, the C code 

was also somewhat simpler since only one calculation was needed in most cases where 

three were required before.  

a.  The True Target Model and PVNT Update Generator 

The true target model, PVNT update generator, and PVNT update signal 

generator for the road following filter system are identical to the subsystem for the 
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general filter design shown in Figure 13. The only difference concerning the PVNT 

position update is in the optimization function contained in the S-function’s C code: 

(1). Optimization Method.  While the PVNT update that is entered 

into the S-function does not change from the real-time general filter model to the real-

time road following filter model, there is an additional set of calculations that takes place 

afterwards. Located in a function declaration in the C code of the S-function, the 

optimization loop finds the closest point on the known road equation to the given PVNT 

update and sets that point as the new ρ  update. The optimization method for the real-

time model replaces the rf_optimise.m script file used in the MATLAB function block 

from the non real-time road following model. In order to keep computation time to a 

minimum, the optimization function in the S-function C code calculates the distance from 

the PVNT coordinate update to set points on the road utilizing a dichotomy algorithm. 

This set of equations controls the adjustments made to the boundaries of search for the 

minimum distance, proving to be much faster than computing the distance equation for 

each point along the road within a set range. This direct search method’s results have a 

high order of accuracy while requiring a minimal amount of computation steps. 

Following completion of the optimization loop, the new ρ  value is outputted to the rest 

of the S-function code. 

b.  The Open Loop Filter 

 
Figure 16.   Open loop filter for the road following model 
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Figure 16 shows the simple open loop integration that calculates the 

update for ρ  and outputs the results back into the S-function for storage and further use. 

c.  Overall Real-Time Design and Function with S-Function Block 

 
Figure 17.   Road following filter real-time model 

 

There are fewer inputs and outputs for the real-time model than the non 

real-time model. While the x, y, and z coordinates are combined into the ρ  variable, the 

system function is nearly identical to the general filter. The open loop filter function call 

block still performs the dead reckoning integration until a PVNT position update is 

received and passed through the optimization function. The asynchronous forward Euler 

integration takes place in the C code inside the S-function but now with only the ρ   
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variable requiring integration from time τ  to time t. As a result, only the ρ variable is 

stored in the buffers before being sent out as the initial condition to the open loop filter as 

the process repeats itself. 
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IV. SIMULATION AND RESULTS 

The purpose of this chapter is to test and compare the results from the developed 

real- and non real-time systems. First, different road models used in the simulations are 

defined. Next, the simulation parameters for east test set are defined as well as a short 

description of the gain values used in the asynchronous constant gain Kalman filters. The 

results portion of the chapter begins with simulation data from the non real-time road 

following filter using the two different types of integration (using an external Simulink 

model file vs. numerical forward Euler integration) discussed at the beginning of Chapter 

III. Finally, the real-time general and road following models are tested under a variety of 

conditions before the data is plotted and discussed. 

A. SIMULATION 

Two different road models were developed for simulation to determine the effects 

of different road characteristics on the performance of the general and road following 

filters. Additionally, the simulation parameters are defined as different values for certain 

parameters are needed for different road models. 

1. Road Models 

Using two road models allows a better comparison between the general and road 

following filters on a case-by-case basis. Each road model is created by a system of 

equations in the x and y planes, while z is set to zero.  

a.  Third Order Road Model 

The first road model is a third order system based on the set of equations 

below: 

0
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While the non real-time system simply uses an embedded MATLAB 

function (as seen in Figure 5) to simulate the road model, the real-time systems are not 

able to employ these embedded functions. To reduce the amount of computation time 

required during simulation, the road equation is created using Simulink blocks instead. 

The subsystem is found in the true target model for both the general and road following 

models. Additionally, the subsystem also calculates the derivative of each equation for 

use in the T_star variable, which is used in the computation of true and estimated 

velocities in the road following filter model. 

 
Figure 18.   Third order road equation in Simulink subsystem for real-time 

simulation 
 

When simulated for a three minute test, these equations resulted in the 

road model depicted in Figure 6. 

b.  Circular Road Model 

It was decided that the second road model should be of a closed loop style 

similar to a rectangle or circle. Since the vehicle model uses a constant velocity during 

the simulation, a system of equations for a circle of constant radius was developed: 
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Identical to the third order road model, the circular road model equations 

had to be created in Simulink without the use of embedded MATLAB functions. The 

circular road equations are not used in the non real-time simulations. 

 
Figure 19.   Circular road equation in Simulink subsystem for real-time simulation 

 

The radius of the circle could be set to complete one loop during the 

simulation. A longer simulation time was chosen to display how the real-time filter does 

not produce errors associated with data overflow during extended tests. In the trials for 

this thesis, an hour long simulation was chosen, resulting in a circle radius of 2865 meters 

and a road model shown in the figure below: 
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Figure 20.   Circular road model 

 

2. Simulation Parameters 

a. Simulation Time 

The simulation time is set to 180 seconds for the third order road model 

and 3600 seconds for the circular road model. NOTE: The simulations for the non real-

time road following filter only use the third order road model. 

b. Sample Time 

The sample time used during both the non real-time and real-time 

simulations for the Simulink model is 0.1 seconds. Additionally, the sample time for the 

general and road following S-function blocks in the real-time simulations is 0.1 seconds. 

c. Asynchronous Kalman Filter Gains 

The gains k1 and k2 are both set equal to 0.5. While the initial response 

time is slightly slower than the response time for higher gain values, trial-and-error 
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testing for both filters in the non real-time and real-time systems has shown that the lower 

gain values are more robust during periods of high PVNT noise or longer PVNT time 

delays. 

d. Reference Frame 

The frame reference used for all simulations is Local Tangent Plane 

(LTP). 

e. PVNT Parameters 

The non real-time road following model used the randomized PVNT delay 

time shown in Figure 4 for all simulations. 

The real-time general and road following simulations vary the PVNT 

parameters over the series of tests. The PVNT position noise is tested at three different 

values: ± 1, 5, and 10 meters. The PVNT delay time is also tested for three different 

scenarios: a simulated pseudo-random delay covering 1-10 seconds, a repeating 5 second 

delay, and a repeating 10 second delay. The simulated pseudo-random delay is shown in 

the figure below. 
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Figure 21.   Simulated pseudo-random PVNT update delay 
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B. RESULTS 

The results section is subdivided into the data from the non real-time simulations 

followed by the data from the real-time simulations. The non real-time simulations 

contain the road following model with the asynchronous integration performed by the 

external Simulink model compared to the numerical forward Euler integration method. 

The real-time simulations include the general and road following models. Each real-time 

model is also put through a series of tests in which certain PVNT parameters are altered, 

such as PVNT delay and input noise. 

1. Non Real-Time Models 

The results for the two non real-time models are divided into three comparisons 

each: position, velocity, and ρ. Both models need to show that they are incorporating the 

PVNT updates into the estimated target data and effectively tracking the target 

throughout the simulation. 
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a. Road Following Model with Separate Simulink Model 
Integration 

(1) Position Comparison 

 
Figure 22.   Comparison of actual vs. estimated target position – Simulink integration 

 

 
Figure 22 depicts the results of the actual target position plotted 

against the estimated target position from the non real-time road following filter with 

external Simulink model integration. It is apparent that the position data is accurate and 

the model does not lose track of the target during the simulation. 
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(2) Velocity Comparison 
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Figure 23.   Comparison of actual vs. estimated target velocity – Simulink integration 

 

 
Figure 23 depicts the results of the actual target position plotted 

against the estimated target position from the non real-time road following asynchronous 

filter with external Simulink model integration. Since the initial velocity of the target is 

assumed to be 0 m/s, the estimated target velocity does not respond until the first PVNT 

update. The plot is zoomed in around 5 m/s (the true target velocity) to show how the 

estimated target velocity obtains the correct value with the help of the PVNT updates. 
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(3) Comparison of ρ Values 

 
Figure 24.   Comparison of actual vs. estimated ρ value – Simulink integration 

 

 
The final comparison was between the actual and estimated ρ 

values for the target. Correlating with the accuracies found on the position and velocity 

comparison plots, the ρ comparison plot shows the same high degree of accuracy. 

b. Road Following Model with Numerical Forward Euler 
Integration 

The results for the non real-time system with the numerical integration 

technique are nearly identical to the method using the external Simulink model file. 
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(1) Position Comparison.  

 
Figure 25.   Comparison of actual vs. estimated target position – Euler integration 

 

 
The figure above shows the actual target position plotted against 

the estimated target position for the non real-time road following filter using numerical 

forward Euler integration. The plot shows nearly identical results to the simulation with 

the double integration performed in the separate Simulink model. The estimated target 

position matches the actual target position with a satisfactory degree of accuracy. 
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(2) Velocity Comparison. 
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Figure 26.   Comparison of actual vs. estimated target velocity – Euler integration 

 

 
Figure 26 depicts the actual target velocity of 5 m/s compared with 

the estimated target velocity from the numerical Euler integration. While the response is 

not as fast as the separate Simulink model double integration, the results show that the 

steady state error remains at zero and the model effectively computes the estimated target 

velocity. If the response were deemed too slow for the environment in which the system 

was placed, the gain values (specifically K2) in the integration loop could be adjusted to 

compensate. 
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(3)  Comparison of ρ Values. 

 
Figure 27.   Comparison of actual vs. estimated ρ velocity – Euler integration 

 

 
Figure 27 shows the actual target ρ value plotted against the 

estimated target ρ value for the simulation using numerical forward Euler integration. 

Further confirming that the Euler integration contained in the MATLAB function code is 

accurate, the data shows nearly identical results.  

Overall, the previous three figures show that the simulation can be 

accurately run using numerical forward Euler integration instead of the double integration 

process being contained in a separate Simulink model. 
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2. Real-Time Models 

a General Filter 

(1) Ideal Conditions.  Ideal conditions are defined as a PVNT 

noise value covering a range of ± 1 meter and a simulated random PVNT delay. 

(a) Third Order Road Model 

The first test for the general filter uses the third order road 

model under ideal conditions with a 180 second simulation time. After completion of the 

simulation, the results are loaded from the .mat file and comparison plots are created. 
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Figure 28.   General filter position comparison plot – Third order road model – Ideal 

conditions 
 
 

Figure 28 shows the comparison of the target’s true 

position versus the general filter’s estimation for the real-time general filter model. The 

estimated position from the filter is quite accurate for the straighter portions of the road 

model and less accurate for the curved sections. A reason for the decrease in estimation 
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accuracy is due to the lack of an optimization function in the general filter s-function. 

Since the general filter design does include a known road model on which to base the 

incoming PVNT position updates, the resulting estimated position is heavily reliant on 

PVNT noise. A plot of position estimation error vs. time is shown below: 
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Figure 29.   General filter position error vs. time – Third order road model 
 
 

Further confirming the position comparison plot in Figure 

28, the error is greatest at the curved sections of the road and least during the straighter 

portions. 
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Figure 30.   General filter velocity comparison plot – Third order road model – Ideal 

conditions 
 

The velocity comparison plot shown above shows a small 

estimation error following acquisition of the target coinciding with the position plot. The 

overall velocity estimation accuracy is good as it stays at or near the target true velocity 

of 5 m/s. 
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Figure 31.   General filter velocity error vs. time – Third order road model 
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The above figure shows the relationship between estimated 

velocity error from the real-time general filter and simulation time. After the initial target 

acquisition, the overall RMS error remains below 0.5 m/s. 

(b) Circular Road Model 

The circular road model simulation is run for one hour of 

simulation time, allowing the target model to complete one loop of the circular track. 
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Figure 32.   General filter position comparison plot – Circular road model – Ideal 

conditions 
 

 

The position comparison plot for the circular road model 

appears to be much better than the third order road model. One reason for this involves 

the fact that the target is following a path that does not include any abrupt changes in 

curvature. Instead the target is engaged in one constant, gradual turn and the dead-

reckoning portion of the real-time general filter is able to accurately follow the vehicle’s 

movement. 
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Figure 33.   General filter position error vs. time – Circular road model 

 
 

The real-time general filter is much more accurate for the 

circular road model than it is for the third order road model as shown in the above figure. 

The RMS position error is rarely above five meters and is centered at around one meter 

error due mainly to PVNT noise. 



 46

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

 

 

True velocity
Estimated velocity

 
Figure 34.   General filter velocity comparison plot – Circular road model – Ideal 

conditions 
 
 

The velocity comparison plot for the circular road model is 

very similar to the velocity plot for the third order road model. The results from the real-

time general filter show a fairly accurate estimated velocity that never strays above 5.5 

m/s or below 4.75 m/s. 
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Figure 35.   General filter velocity error vs. time – Circular road model 

 

The estimated velocity error plot coincides with the 

velocity comparison plot for the circular road model. The velocity estimation performed 

by the real-time general filter is slightly more accurate for the circular road model than it 

is for the third order road model with a lower RMS error value over the system 

simulation time. 

(2) PVNT Update Delay Variance.  The next testing phase for 

the real-time general filter is to alter the delay time from the PVNT update signal 

subsystem to view the effects on target motion estimation. Instead of using the simulated 

pseudo-random update signal, a signal generator block is used to simulate a repeating five 

and ten second PVNT position update delay. 

(a)  Third Order Road Model 

The first simulation run involved a repeating PVNT update 

delay of five seconds. 
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Figure 36.   General filter position comparison plot – Third order road model – 5 

second PVNT delay 
 

 

Figure 36 shows the effects of a repeating five second 

PVNT delay on the general filter model. The result of PVNT updates arriving once 

every five seconds slightly decreases the estimated target position accuracy, especially 

around the areas of greater curvature in the road model. The error increases near the end 

of the simulation due to the exponential road profile equations. Typically, an update 

with a shorter delay time allows the model to correct itself to be closer to the actual road 

model in between the larger delay times of five seconds or greater. The position 

accuracy therefore suffers without the less delayed PVNT updates to fill in the gaps. 



 49

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

 

 

True velocity
Estimated velocity

 
Figure 37.   General filter velocity comparison plot – Third order road model – 5 

second PVNT delay 
 

The velocity estimation plot shows little or no change from 

the random PVNT delay times. The real-time general filter remains fairly accurate with a 

slight bias due to the inputted PVNT noise. 

Next, the real-time general filter using the third order road 

model is subjected to a repeating ten second PVNT update delay. Based on the PVNT 

background information, a ten second delay is the longest expected delay associated with 

the PVNT computation time. 
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Figure 38.   General filter position comparison plot – Third order road model – 10 

second PVNT delay 
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The repeating ten second PVNT update delay greatly 

decreases the accuracy of the general filter model. The trend of the filter accuracy 

declining during areas of increased curvature turns along the road continues here as the 

greatest variances in estimated position accuracy are at the first turn in the third order 

road model. 
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Figure 39.   General filter velocity comparison plot – Third order road model – 10 

second PVNT delay 
 

 

The velocity comparison plot for the ten second PVNT 

update delay shows similar results when compared to the five second delay test. After the 

target acquisition, the filter shows good velocity estimation close to the target’s true 

velocity of five meters per second. 
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(b) Circular Road Model 

The varying simulation parameters that were used for the 

third order road model are also used for the circular road model. The repeating five 

second PVNT delay results are discussed first. 
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Figure 40.   General filter position comparison plot – Circular road model – 5 second 

PVNT delay 
 

 

The position comparison plot for the repeating five second 

PVNT delay simulation shows an estimated position that closely matches the true target 

position. It is necessary to view the position error vs. time plot, though, to see the true 

relationship due to the large sample time and axes scales. 
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Figure 41.   General filter position error plot – Circular road model – 5 second PVNT 

delay 
 

 

As shown by the plot, the estimated position error from the 

real-time general filter remains largely unchanged with a five second PVNT delay when 

compared to the same trial under ideal conditions. After the initial acquisition period, the 

RMS error pertaining to the estimated position remains under five meters. 
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Figure 42.   General filter velocity comparison plot – circular road model – 5 second 

PVNT delay 
 

 

The velocity comparison plot shows an estimated velocity 

that is only slightly off of the true target’s five meter per second velocity. Based on the 

data from Figures 40, 41, and 42 and the circular road model simulation under ideal 

conditions, the real-time general filter does not lose any accuracy with the repeating five 

second PVNT delay.  

Like the third order road model, the system using the 

circular road model is also tested at the upper limit of the expected PVNT delay: 
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Figure 43.   General filter position error plot – Circular road model – 10 second 

PVNT delay 
 

 

The position error plot for the ten second PVNT delay 

simulation shows a slight increase in the estimated position error from the five second 

delay test. The plot in Figure 43 shows a peak error value of just less than eight meters 

compared to a maximum error of five meters for the five second PVNT delay error plot. 
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Figure 44.   General filter velocity comparison plot – Circular road model – 10 second 

PVNT delay 
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The velocity comparison plot actually shows a slightly 

better target velocity estimate than the repeating five second delay simulation. This is one 

example of how the shape of the road affects the results of the simulation. While the third 

order road model showed no change in velocity estimation between the five and ten 

second PVNT delay tests, the circular road model actually showed an improvement due 

to its shape. 

(3) PVNT Noise Variance. The final testing phase for the real-

time general filter involved setting the PVNT delay back to the simulated pseudo-random 

delay time and adjusting the random number generator block controlling PVNT noise in 

the true target model subsystem block. While the ideal conditions had a PVNT noise 

value of ± 1 meter, the noise would be increased to ± 5 and ± 10 meters between the 

simulations. 

(a)  Third Order Road Model 

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - General filter

x coordinate

y 
co

or
di

na
te

 

 

True position
Estimated position

 
Figure 45.   General filter position comparison plot – Third order road model – ± 5 m 

PVNT noise 
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First, the real-time general filter model is tested with a ± 5 

meter PVNT noise and the results appear quite similar to the ideal conditions test. When 

comparing the position plots, a slight decrease in estimation accuracy is noticed as the 

position updates do not match up with the target’s true position due to the extra PVNT 

noise. 
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Figure 46.   General filter velocity comparison plot – Third order road model – ± 5 m 

PVNT noise 
 

The effects of the added PVNT noise are more noticeable 

in the velocity comparison plot due to the larger axes in the position comparison plot. The 

deviation between the true and estimated velocity is greater than the velocity difference 

found in the ideal conditions test. 

The PVNT noise is then doubled to ± 10 m for the final set 

of tests for the third order road model using the real-time general filter design. This is 

very impractical as other filter designs with PVNT updates can boast ten meter accuracy, 

but it is important to show how much the filter can attempt to compensate to the inputted 

error [6]. 
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Figure 47.   General filter position comparison plot – Third order road model – ± 10 

m PVNT noise 
 

Even with a PVNT noise value having a ten meter variance 

in either direction, the real-time general filter shows little change from the five meter 

PVNT noise simulation. While the overall accuracy does have room for improvement, 

there is minimal change in position estimation accuracy between the five and ten meter 

PVNT noise tests. 
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Figure 48.   General filter velocity comparison plot – Third order road model – ± 10 

m PVNT noise 
 

The velocity comparison plot shows an estimated steady 

state velocity that is always within 0.6 m/s of the true target velocity. While the ± 5 meter 

test had a maximum error of 0.35 m/s, the test with the doubled PVNT input error shows 

less than a twofold increase in velocity estimation error. 

(b) Circular Road Model 

The circular road model is put through the same tests for 

PVNT noise variance as the third order road model for the real-time general filter system. 
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Figure 49.   General filter position comparison plot – Circular road model – ± 5 m 

PVNT noise 
 

The added PVNT noise seems to have a minimal effect on 

the real-time general filter running the circular road model but a look at the position error 

plot is required due to the large axes scale. 
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Figure 50.   General filter position error plot – Circular road model – ± 5 meter 

PVNT noise 
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Figure 50 shows that the added noise from the PVNT input 

results in an estimated position error along the circular road model that is more than 

double that of the ideal conditions test. The real-time general filter shows just how 

dependent it is on the accuracy of the PVNT position update since it does not utilize the 

road equation in its calculations. 
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Figure 51.   General filter velocity comparison plot – Circular road model – ± 5 meter 

PVNT noise 
 

The velocity comparison plot shows an increase as well due 

to the extra PVNT input noise. There is quite a large change when compared to the 

velocity plot for the circular model under ideal conditions. While the ideal test resulted 

in a maximum estimated velocity of 5.2 m/s, the test with the PVNT noise pushed the 

maximum estimated velocity to over 5.5 m/s. The modular shape of the velocity 

estimation is due to the shape of the road profile. There are certain points in the model 

where there is only velocity error in the x or y direction as opposed to both the x and y 

directions. 
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Finally, the real-time general filter design using the circular 

road model is simulated with a ± 10 meter PVNT input noise and the results are 

analyzed. 
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Figure 52.   General filter position error plot – Circular road model – ± 10 meter 

PVNT noise 
 

 

As expected, the RMS error increased with the doubled 

PVNT noise as shown in Figure 52. The peak error is just over 27 meters at around 1660 

seconds into the simulation. 
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Figure 53.   General filter velocity comparison plot – Circular road model – ± 10 

meter PVNT noise 
 

 

The velocity comparison plot for the real-time general filter 

during this trial shows a maximum absolute error of around one meter per second. The 

figure further shows that the velocity error has a direct relationship to PVNT input error. 

b. Road Following Filter 

The system parameters for the tests involving the real-time road following 

filter are identical to those performed with the real-time general filter 

(1) Ideal Conditions.  Ideal conditions are defined as a PVNT 

noise value covering a range of ± 1 meter and a simulated random PVNT delay. 
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(a) Third Order Road Model 
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Figure 54.   Road following filter position comparison plot – Third order road model 

– Ideal conditions 
 

 

The results for the real-time road following filter using the 

third order road model under ideal conditions appear exponentially more accurate than 

the position comparison plot for the real-time general filter design under the same 

conditions. To confirm these results, the position error vs. time plot is examined: 
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Figure 55.   Road following filter position error plot – Third order road model – Ideal 

conditions 
 

The position error plot shows that after the initial target 

acquisition time, the real-time filter is able to estimate a target position that has less than 

a ten meter deviation from the actual position. During the straighter sections of the road, 

the position estimation is even more accurate with the error dropping to less than one 

meter. 
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Figure 56.   Road following filter velocity comparison plot – Third order road model 

– Ideal conditions 
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The velocity comparison plot is actually quite similar to the 

results from the real-time general filter. The low steady state error for estimated velocity 

is confirmed by Figure 57: 
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Figure 57.   Road following filter velocity error plot – Third order road model – Ideal 

conditions 
 

 

The velocity error plot is nearly identical to the real-time 

general filter velocity error plot for the same conditions. Following the target acquisition 

period, the absolute velocity error remains less than 0.2 m/s. 

Additionally, the road following filter utilizes the road 

parameter ρ  in the equations that track target movement. This allows the variance in the 

estimated and actual ρ value to be plotted as well. Throughout all of the tests, the true 

target ρ value linearly increases with time as seen in the next figure. 
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Figure 58.   Road following filter ρ  comparison plot – Third order road model – 

Ideal conditions 
 

The difference in the estimated and actual ρ  value is kept 

to a minimum by the real-time road following filter. The system is able to accurately 

estimate the ρ  value through the asynchronous forward Euler integration process 

coupled with the optimized PVNT position input. 

(c) Circular Road Model 
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Figure 59.   Road following filter position comparison plot – Circular road model – 

Ideal conditions 
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The position estimation for the real-time road following 

filter using the circular road model appears very accurate and the position error vs. time 

plot is examined: 
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Figure 60.   Road following filter position error plot – Circular road model – Ideal 

conditions 
 
 

The real-time road following filter with its added PVNT 

optimization function decreases the estimated error during the simulation. There is a 

noticeable difference when compared to the general filter simulation using the circular 

road model under ideal conditions. While the real-time general filter had a maximum 

absolute error of five meters, the real-time road following filter only had a maximum 

absolute error of three meters. 
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Figure 61.   Road following filter velocity comparison plot – Circular road model – 

Ideal conditions 
 
 

The velocity comparison plot shows the estimated velocity 

using the real-time road following filter to be very similar to the results from the real-

time general filter. It is noticed that both filters have a slight steady state velocity error 

during the simulations even though the precision is good. 
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Figure 62.   Road following filter velocity error plot – Circular road model – Ideal 

conditions 
 
 

The velocity error plot for the real-time road following 

filter using the circular road model is nearly identical to the third order road model. The 

maximum absolute estimated velocity error is never more than 0.2 m/s following the 

target acquisition time. 

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 True vs. estimated ro value - Road following filter

Time (sec)

ro
 v

al
ue

 

 

True ro
Estimated ro

 
Figure 63.   Road following filter ρ  comparison plot – Circular road model – Ideal 

conditions 
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The ρ  comparison plot coincides with the estimated 

position and velocity plots, showing minimal estimation error throughout the hour long 

simulation. 

(2) PVNT Update Delay Variance.  The next testing phase for 

the real-time road following filter is to adjust the delay time from the PVNT update 

signal subsystem. Instead of using the simulated pseudo-random update signal, a signal 

generator block is used to simulate a repeating five and ten second PVNT position update 

delay. 

 

(a) Third Order Road Model 
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Figure 64.   Road following filter position comparison plot – Third order road model 

– 5 second PVNT delay 
 
 

The expected PVNT delay can be as long as ten seconds so 

the five second PVNT delay does not affect the position tracking results. The velocity 

comparison plot below depicts similar results: 
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Figure 65.   Road following filter velocity comparison plot – Third order road model 

– 5 second PVNT delay 
 
 

Figure 65 shows the estimated target velocity from the real-

time road following filter plotted against the actual target velocity. The results are nearly 

identical to the ideal conditions plot shown in Figure 56. 
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Figure 66.   Road following filter ρ  comparison plot – Third order road model – 5 

second PVNT delay 
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The ρ comparison plot depicts an estimated ρ  value that 

achieves a near zero steady state error. The repeating five second PVNT delay can be 

viewed during the first 30 seconds of the test as each update brings the estimated ρ value 

closer to the target’s true ρ  value. 

The next step involves doubling the PVNT delay to ten 

seconds for the third order road model. 
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Figure 67.   Road following filter position comparison plot – Third order road model 

– 10 second PVNT delay 
 
 

The position comparison plot for the repeating ten second 

PVNT delay test shows the robustness of the real-time road following filter with longer 

delay times. As long as the inputted PVNT update has little noise, the optimization 

function ensures the accuracy of the new ρ value sent to the asynchronous forward Euler 

integration function. This results in a more accurate target tracking model even though 

the frequency of the updates has decreased. 
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Figure 68.   Road following filter velocity comparison plot – Third order road model 

– 10 second PVNT delay 
 
 

The velocity comparison plot, like the position comparison 

plot, shows little or no change from the additional five seconds of PVNT update delay. 

The maximum absolute error of the velocity estimation remains the same following target 

acquisition. 
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Figure 69.   Road following filter ρ  comparison plot – Third order road model – 10 

second PVNT delay 
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The ρ comparison plot in the figured above is best viewed 

next to the ρ comparison plot for the repeating five second PVNT delay test. Even 

though the delay for the position updates is twice as long, the accuracy of the ρ estimate 

is aided by the optimization routine in the S-function. While the settling time increases 

slightly, the overall steady state accuracy is not affected by the increased PVNT delay. 

(b) Circular Road Model 

The same PVNT delay trials are performed with the real-

time road following filter using the circular road model. 

Initial impressions of the position comparison plot for the 

circular road model trial with a repeating five second PVNT update delay are good but 

the  depiction of the estimated position error plot is shown below due to the large sample 

time and figure axes. 
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Figure 70.   Road following filter position error plot – Circular road model – 5 second 

PVNT delay 
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The plot of estimated position error vs. time shows the 

results of the simulation with a repeating five second PVNT update delay are no different 

from the simulation under ideal conditions. The maximum absolute position errors are 

identical between the two trials as the repeating delay shows no effect on the road 

following filter using the circular road model. 
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Figure 71.   Road following filter velocity comparison plot – Circular road model – 5 

second PVNT delay 
 
 

The velocity comparison plot shown above for the real-time 

road following filter mimics the results for the position error comparison plot. No change 

is seen between the velocity estimation accuracy between the repeating five second delay 

and ideal conditions trials. 

The next step involves doubling the PVNT delay to ten 

seconds for the circular road model. 
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Figure 72.   Road following filter position error plot – Circular road model – 10 

second PVNT delay 
 
 

Figure 72 depicts the difference between the estimated and 

actual target position with a repeating ten second PVNT delay. Even when the PVNT 

delay is set at its upper expected limit, the real-time model only loses one meter of 

accuracy during the hour long trial. Once again, the addition of the optimization function 

to the real-time road following filter’s code aids the robustness of the system with respect 

to longer periods of time between PVNT position updates. 
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Figure 73.   Road following filter velocity comparison plot – Circular road model – 10 

second PVNT delay 
 

The velocity comparison plot for the real-time road 

following filter with a repeating ten second delay also shows no decrease in accuracy 

throughout the trial. It is interesting to note that, similar to the same trial for the real-time 

general filter, the steady state error of the estimated velocity actually decreases with the 

increase in PVNT delay time. While each real-time filter’s performance is mainly due to 

the code within their respective S-functions, the shape of the road model also plays a role 

in the accuracy of the target motion estimation. 

(3) PVNT Noise Variance. The final testing phase for the real-

time road following filter involves setting the PVNT delay back to the simulated pseudo-

random update and adjusting the random number generator block controlling PVNT 

noise in the true target model subsystem block. While the ideal conditions had a PVNT 

noise value of ± 1 meter, the noise would be increased to ± 5 and ± 10 meters. 
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(a) Third Order Road Model 
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Figure 74.   Road following filter position comparison plot – Third order road model 

– ± 5 m PVNT noise 
 

Figure 74 shows that the real-time road following filter is 

still able to quite accurately track the target model with the additional PVNT input noise. 

The five meter variance is not enough to see any noticeable differences in position 

estimation precision. 

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

 

 

True velocity
Estimated velocity

 
Figure 75.   Road following filter velocity comparison plot – Third order road model 

– ± 5 m PVNT noise 
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Similar to the position comparison plot, the figure above 

shows a very slight variance in estimated velocity error during the curved portions of the 

road. The small change in velocity estimation accuracy, however, does not seriously 

affect the performance of target tracking. 
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Figure 76.   Road following filter ρ  comparison plot – Circular road model – ± 5 m 

PVNT noise 
 
 

The ρ comparison plot shows that the overall accuracy of 

the real-time filter remains unchanged except for slight errors around one and two 

minutes into the simulation. When compared to the position plot, it is found that these 

times correspond with the major areas of greatest curvature in the road model. 

The PVNT noise is then doubled to ± 10 m for the final set 

of tests for the third order road model using the real-time road following filter design. 
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Figure 77.   Road following filter position comparison plot – Third order road model 

– ± 10 m PVNT noise 
 
 

The effects of the added PVNT noise still not quite 

noticeable in the position comparison plot even after the maximum variance of the PVNT 

input error is doubled. The system still appears to track the target without a significant 

drop in accuracy. 
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Figure 78.   Road following filter velocity comparison plot – Third order road model 

– ± 10 m PVNT noise 
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The velocity comparison plot with the results from the trial 

with ± 10 meters of PVNT noise finally shows the effects on the system. The 

optimization function located in the road following filter’s C code takes the x, y, z 

coordinate input from the PVNT update and finds the closest point on the pre-known road 

model to the PVNT input. The optimization loop ensures that the new position update lies 

along the road model by converting the new x, y, z coordinates into a ρ value, but it 

cannot guarantee the accuracy of the new estimated ρ value. Therefore, while the 

robustness of the real-time road following filter with respect to PVNT noise is better than 

the real-time general filter, the target motion estimation accuracy still decreases with 

larger amounts of input noise. 
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Figure 79.   Road following filter ρ  comparison plot – Circular road model – ± 10 m 

PVNT noise 
 

The findings from the previous figures are confirmed with 

the ρ comparison plot for the ± 10 m PVNT noise trial. The deviations in estimated and 

true target ρ values are more noticeable than in the previous test. The optimization loop 

in the S-function code is able to greatly reduce error, but it cannot eliminate all of the 

variation between the actual ρ value and the resulting ρ  value from the PVNT position 

update. 
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(b) Circular Road Model 

The same test parameters are used with the circular road 

model as with the third order road model. 
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Figure 80.   Road following filter position error plot – Circular road model – ± 5 m 

PVNT noise 
 
 

The position error plot for the circular road model shows a 

large increase in RMS error from the ideal conditions test. While the RMS error for the 

ideal conditions trial is around two meters, the RMS error shown in Figure 81 is roughly 

seven meters.  
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Figure 81.   Road following filter velocity comparison plot – Circular road model – 

± 5 m PVNT noise 
 
 

The position comparison plot directly coincides with the 

velocity comparison plot. The precision of the velocity estimates increase at around 1250 

and 3000 seconds into the simulation, resulting in better position estimation. 

The PVNT noise is then doubled to ± 10 m for the final set 

of tests for the circular road model using the real-time road following filter design. 
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Figure 82.   Road following filter position error plot – Circular road model – ± 10 m 

PVNT noise 
 
 

The extra five meters of PVNT deviation greatly affect the 

position estimation results of the real-time road following filter for the circular road 

model. The peak absolute error value is only two meters less than the peak absolute error 

value for the same test parameters using the real-time general filter design. The RMS 

error, however, is much less for the real-time road following filter. 
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Figure 83.   Road following filter velocity comparison plot – Circular road model – 

± 10 m PVNT noise 
 

The velocity comparison plot for the real-time road 

following filter is nearly identical to the velocity plot for the real-time general filter 

shown in Figure 54. The likeness of the two plots is a perfect example of how real-time 

road following filter’s robustness depends not only on inputted errors, but the road model 

as well. 

c. Additional Road Models and Worst Case Scenarios 

The previous examples of the real-time models show that the accuracy of 

the target motion estimation is greatly affected by the amount of curvature present in the 

road model. The road following filter design is able to compensate for higher order road 

models and greater curvatures than the general filter design due to the fact that the road 

equations are used in the filter code. To show just how much of a difference there is 
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between the road following and general filters, the real-time simulations are run under 

ideal conditions using four road models with increasing amounts of curvature. The 

equations for the road models are shown below: 

0
x
z

ρ=
=

 for all road models 

Road model 1: 2.7922222y x=       (6) 

Road model 2: 3 20.0000192 0.025 9.74y x x x= − +     (7) 

Road model 3: 3 20.000033642291 0.0444961 15.5884511y x x x= − +  (8) 

Road model 4:         (9) 
10 5 7 4 5 3 21.98707 10 3.0300064 10 9.832032 10 0.0219297 11.64832y x x x x x− − −= − + − − +i i i  

 

The four road models are plotted in the following figure to show the 

amount of curvature for each set of equations. 
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Figure 84.   Road model comparison 



 87

The real-time road following and general filters are both run for three 

minute simulations and their position estimation, position error, and velocity error plots 

are directly compared. 

(1) Road Model 1. The first road model depicts a linearly 

dependent first order plot where there is no curvature in the shape of the road. 
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Figure 85.   Filter position estimation comparison – Model 1 

 

As expected, there is no difference between the estimated positions 

from the real-time road following and general filters. This is a rare situation in which the 

dead reckoning style integration is enough to provide an accurate position estimate for 

both filters throughout the simulation. 
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Figure 86.   Filter estimation error comparison – Model 1 

 

The error comparison plot between the two filters confirms the results from the 

position estimation plot. The estimated velocity and position values from the filters are 

nearly identical throughout the simulation. 

(2) Road Model 2. The second road model is the same system 

of equations used as the “third order road model” in the previous chapters. It is a third 

order system with a modest amount of curvature throughout the simulation run time. 
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Figure 87.   Filter position estimation comparison – Model 2 
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The figure above shows the amount of deviation the third order 

equation has between the results of the two filters. During the periods of maximum 

curvature, specifically around x=250 and x=700, the real-time general filter is noticed 

lagging in its position estimates. The real-time road following filter, on the other hand, 

displays an excellent target approximation compared to the actual road model throughout 

the test. 

 

 
Figure 88.   Filter estimation error comparison – Model 2 

 

 
The comparison of estimated velocity error is quite similar 

between the two filters while the estimated position error shows a huge difference. 

Following the target acquisition portion of the run, the errors in estimated velocity stay 

below 0.25 m/s. 

(3) Road Model 3. The next road model tested is a third order 

system that has an increased amount of curvature when compared to the second road 

model. 
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Figure 89.   Filter position estimation comparison – Model 3 

 
 

The third road model shows the real-time road following filter still 

performing quite well when compared to the actual target track. The dead reckoning 

estimation from the real-time general filter, however, is worse than the previous road 

model test. The sections of sharp curvature in the road create large position errors in the 

real-time general filter’s estimation. 

 
Figure 90.   Filter estimation error comparison – Model 3 
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Despite the large differences in the position error plot, the velocity 

error comparison figure shows that the real-time road following filter provides only a 

slightly better estimation than the real-time general filter. 

(4) Road Model 4. The final road model tested is meant to 

greatly increase the amount of curvature seen in the previous models. This last road 

model features a fifth order system of equations to compare the results from the two 

filters. 
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Figure 91.   Filter position estimation comparison – Model 4 

 

The extreme amount of curvature present in the fifth order road 

model clearly decreases the accuracy of the position estimates from the real-time general 

filter. The estimated target track is far outside the actual target track, especially 

noticeable around the final, sharp turn at x=850. The real-time road following filter, on 

the other hand, seems to be completely unaffected by the additional turns in the road 

model as the robustness of the filter to road model curvature is displayed. 
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Figure 92.   Filter estimation error comparison – Model 4 

 
 

Similar to the previous trials, the velocity estimation errors are 

nearly equal between the two filters while the position error plots display large variances. 

Despite the similarities on the velocity plot, though, the real-time road following filter 

proves that it is a much better predictor of target motion than the real-time general filter 

for road models with varying amounts of curvature. 

(5) Worst case scenario. A worst case scenario is chosen to 

show that even though the real-time road following model shows overall great target 

motion estimation, there are still limits to the amount of PVNT input noise and delay that 

it can overcome. To show a true failure of the filter, the PVNT input delay is set to 50 

seconds for the real-time road following model using the circular road model. 
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Figure 93.   Position comparison plot – Worst case scenario 

 

As shown in Figure 93, the estimated position of the target model 

is very poor. The 50 second PVNT delay is simply too long for the filter to accurately 

predict target motion. 

 

 
Figure 94.   Filter estimation error comparison – Worst case scenario 
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The velocity error plot shows a steady state error of around 130 

m/s while the position error plot depicts nearly a five kilometer position estimation error. 

Remembering that the circular path is only 2865 meters in radius, these results illustrate a 

complete failure of the real-time road following model. 
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V. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSIONS 

The overall goals set for this thesis were accomplished. The non real-time road 

following model was successfully developed and tested to ensure proper function. The 

problems associated with converting the non real-time systems to real-time were solved 

with the use of buffers and the implementation of S-function C code. Finally, the real-

time general and road following systems were successfully modeled and simulated. All of 

the results for the real-time models were then compiled and analyzed to provide a definite 

set of conclusions. 

Throughout the simulations in the thesis, the road following filter design shows 

that it is a better target motion estimator than the general filter design. The simulations 

display the relative robustness of the real-time road following model to several forms of 

PVNT input errors while the real-time general filter model results were less accurate. 

Additionally, the ability of the real-time road following model to provide accurate 

position and velocity estimation results along simulated roads of increasing curvature 

were shown. The real-time general filter faltered on road models containing larger 

amounts of curvature as the dead reckoning integration without the optimization 

technique was not enough to give accurate results. Finally, while the real-time road 

following filter performed well in all the practical simulations put forth in the thesis, it 

was shown that the filter can fail in a worst case scenario involving exceptionally large 

PVNT input errors. 

B. RECOMMENDATIONS 

There are quite a few opportunities for further work on the subject of this thesis. 

The methods used are a solid foundation on which improvements can be made. One 

simple test that can be worked on includes adjusting the k1 and k2 gain values for the 

asynchronous integration loop. Similar to a proportional compensator, lower gain values 

result in smaller overshoot with slower response time while higher gain values improve 
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response time but increase overshoot. Some tweaking may be required to find the best 

compromise for filter performance that will more accurately represent a field testing 

environment. 

Another possible improvement concerning filter accuracy can be made by 

examining the asynchronous filter integration process. Currently, the model utilizes 

forward Euler integration to cycle back from the delayed PVNT update to the current 

simulation time. Future work may involve using trapezoidal or higher order of integration 

to see if this improves overall target motion estimation accuracy. 

Other areas for immediate work include improvements to the S-function code to 

ensure the minimal amount of required computation time along with storing and plotting 

the data from each iteration of the asynchronous filter. Further testing can provide results 

with different types of road models to see what direct relationships exist between road 

models and filter performance. 

Eventually, the simulated real time system can be loaded into hardware and 

bench-tested. The final goal is to have a program that is able to run in real time on an 

unmanned aerial vehicle during field testing. 
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APPENDIX  

This appendix presents the ANSI C code for the general and road following filter 

S-functions as well as a manual explaining the programs’ operation. 

The purpose of the S-function is to provide an alternative method to MATLAB 

functions that will allow the system to perform real-time simulations. Each filter design 

performs a number of different operations with the goal of providing accurate target 

motion estimation. The filters receive delayed PVNT updates, perform asynchronous 

forward Euler integration from the update time to current time, and then output the results 

to the open loop filter. The open loop filter then runs until the next PVNT update arrives. 

 

A. GENERAL FILTER 

1.  Manual 

File: s_filter_general.c 

 

Lines 26-49  

Complete basic program initializations, library calls, and global variable input.  

Lines 26 and 27  

Designate the file name and indicate that the file is in C code, to be converted into 

MEX format and run in MATLAB.  

Lines 29-34 

Make all the necessary library calls that are required in the program.  

Lines 40 and 41  

Take in the two S-function parameters, MAX_DELAY and TIME_STEP, from the 

S-function block in the Simulink model. MAX_DELAY is the maximum amount 

of expected delay in between PVNT updates while TIME_STEP is the time step to 

be used by the C code. NOTE: The time step parameter value must match the 

discrete time step value found on the simulation parameters menu in Simulink.  
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Lines 45 and 46  

Convert the parameters into “real_T” format for use in numerical calculations 

later. 

Line 49  

Defines the global variable MAX_INDEX, used to ensure that buffer overflow 

does not occur. 

 

Euler_integration function 

Line 58 

Lists the inputs to the function along with buffers marked by an asterisk in front 

of their names.  

Lines 65-72 

Perform forward Euler integration for the x, y, and z variables, assigning the new 

position and velocity values to the buffers beginning with “temp.” 

 

mdlInitializeSizes 

Sets up the sizes of the various vectors used in the code.  

Line 82  

Means that there will be two parameters inputted into the S-function block in 

Simulink.  

Lines 83-86  

Return an error to MATLAB if the incorrect number of parameters is found.  

Line 88 

Defines zero continuous states since the model is running with a preset, fixed step 

time.  

Line 89  

Defines eleven discrete states which must match the number of input ports found 

in line 91.  

Lines 92-102  

Set the size of each input port 
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Lines 103-113  

Denote each input port as a direct feed through port.  

Line 115  

Defines eight output ports from the S-function. 

Lines 116-123  

Define the width of each port.  

Line 125 

Defines one sample time to be used. 

Lines 126-129 

define the number of real, integer, pointer, and mode work vectors to be used in 

the program. The work vectors can be thought of as a value of a certain type (real, 

integer, pointer, etc.) that is stored in persistent memory. This means that the 

value will be stored even while the program is called multiple times.  

Line 130 

Defines the number of zero crossings to be zero as it is not used in the filter 

program. 

 

 

mdlInitializeSampleTimes function 

Line 144 

Defines the program’s sample time to be set to dT, which come from the second 

parameter input to the S-function block in line 45.  

Line 145 

Indicates a 0.0 second offset time 

Line 147  

Indicates that a function call is made on the first element of the first output port. 

 

mdlStart function 

Defines all of the variables that need to be initialized only once, i.e. the very first 

time the program is run in the simulation.  
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Line 161 

Predefines the integer work vectors for the index counter and the integrator flag 

that indicates when the discrete integrator blocks in the open-loop filter subsystem 

need to be reset.  

Lines 162 and 163 

Predefine the real work vectors for the initial x, y, and z positions and velocities.  

Lines 168-170  

Predefine the buffers that are used in the code for data storage. 

Lines 175-189 

Initialize the buffers to a number of positions equal to MAX_INDEX (from line 

49) with each position having enough memory to store a piece of data with the 

size real_T. The calloc command also initializes every position in the buffers to 

zero.  

Lines 191-199 

Define the first value for the index counter, integrator reset flag, and position and 

velocity initial conditions to be zero.  

Lines 203-219  

Set the pointer work vectors to point to the first position of each of the buffers. 

Lines 221-230 

Set and store the initial integer and real work values. 

 

mdlOutputs function 

Lines 242-270  

Contain the input and output declarations.  

Lines 242-247 and 253-258 

Define the pointers and values of the position and velocity estimates coming from 

the open loop filter function call.  

Lines 248 and 259  

Define the pointer and value coming in from the PVNT update delay subsystem 

Lines 249-251 and 260-263  
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Define the actual PVNT update (x,y,z) from the target model subsystem.  

Lines 252 and 263  

Designate a port for the clock input.  

Lines 264-269 

Define output ports for the position and velocity initial conditions to the open-

loop filter function call.  

Line 270 

Defines the integrator reset signal, which is also fed into the open-loop filter 

function call.  

Lines 272-280  

Contain declarations for the work values and the buffers which match the 

declarations found in the mdlStart function.  

Lines 286-290 

Define and initialize the non-persistent variables that are used only in the 

Euler_integration and mdlOutputs function. 

Lines 302-318 

Retrieves the values that were stored in the pointer work vectors  

Lines 321-328  

Retrieves the values that were stored in the integer and real work vectors.  

Lines 338-388 

Contained in an if loop that executes only if the index counter is less than or equal 

to the preset MAX_INDEX value. This ensures that no data is written to the 

buffers beyond their maximum preset number of storage positions, reducing the 

risk of buffer overflow.  

Line 345 

Sets the integrator_reset output to the integer work value integrator_flag. 

Lines 354-359  

Take in the estimated position and velocity values from the first six inputs 

(arriving from the outputs of the open-loop filter function call).  

Lines 362-367  
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Set the respective buffer values to the inputted position and velocity estimates. 

These values are then also stored in the real work vectors designating position and 

velocity initial conditions.  

Line 378  

Resets the integrator flag integer work value to zero (if it was set to one following 

the Euler integration loop, see line 473).  

Lines 380-382 

Take in the PVNT position update (x,y,z) from the true target model subsystem in 

the Simulink diagram 

Lines 385-387. 

 Assign the values from the PVNT position update to their respective buffers. 

Lines 392-475  

Contained in an if loop that is only triggered if the input from the PVNT delay 

subsystem is set high, indicating that a PVNT update is available. 

Lines 395-400  

Adjust the pointers to each position and velocity buffer so that they now refer to 

timeτ , the time to which the PVNT update refers. This is controlled by the index 

integer work vector which is incremented after each iteration of the mdlOutputs 

function (see line 479).  

Lines 402-404 

Perform the same operation for the buffers that contain the PVNT position update 

data.  

Lines 408-410 

Calculate the difference between the estimated position data at time τ  and the 

PVNT position update at time τ  for x, y, and z.  

Lines 414-419  

Set up the values for the first position of the buffers that are used in the 

Euler_integration function and to pass on the updated position and velocity data 

to the open-loop filter function call. 
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Line 425  

Begins the asynchronous portion of the S-function. The for loop runs enough 

times to move the new estimated position and velocity values from time τ  to time 

t (current system time), which is controlled by the index integer work vector 

value.  

Lines 430-432 

Set the delta variable values originally set in lines 408-410 to zero after the first 

iteration of the for loop, allowing for normal, dead-reckoning style integration.  

Line 435 

Passes the required variables to the Euler_integration function in lines 58-73. 

Additionally, the “&” in front of the temp buffers indicate that their changed 

values from the Euler_integration function will be saved after the function 

executes.  

Lines 439-444  

Increment the pointer values for the buffers that will contain the updated position 

and velocity estimates. 

Lines 448-453  

Actually set the buffers equal to the updates. 

Lines 463-468 

After the for loop runs the appropriate number of times to arrive at time t, the 

final value from each of the buffers containing the updated position and velocity 

estimates are passed to the initial condition real work vectors in these lines. 

 

Additionally, two integrator reset values are set. The first is the reset_index 

variable on line 470 set equal to one and used inside the S-function program on 

line 477.  

The second is the integrator_flag integer work value on line 473 that is outputted 

to the open-loop function call outside the S-function block. 

The remainder of the buffer pointer incrementation/resets take place in the 

if/else loop in lines 477-501. The if loop portion checks to see if the current index 
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variable value is less that the preset MAX_INDEX value and if the reset_index 

variable value is equal to zero (indicating that a PVNT update did not arrive 

during the current mdlOutputs function iteration. If so, the index integer work 

value is incremented along with the pointers to the position and velocity data 

buffers.  

If the criterion for the if loop are not met, meaning that a PVNT update has 

occurred, the buffer pointers are all reset back to their first position and the index 

integer work value is set to zero. This ensures that the buffers are simply 

overwritten with the new data until the next PVNT update and buffer overflow 

does not occur. Finally, the pointer work values are updated to now designate the 

new pointer values for the position and velocity data buffers. 

  

mdlUpdate function 

This would be the function in which states would be incremented if they were 

used in the program. Since the filter design does not use theses states, however, 

the mdlUpdate function is only left in the program as a formality. 

 

mdlTerminate function 

In this case, all of the data from the buffers must be cleared to avoid errors when 

re-running the simulation multiple times.  

Lines 537-553 

Designate each of the buffers that were originally defined in the mdlStart 

function.  

Lines 560-574 

Actually release the data stored in the buffers. 



 105

2. Code 

1 /*  File    : s_filter_general.c 
2  *  Abstract: 
3  * 
4  *      This S-function is a combination of an open-loop filter using a  
5  *      function call subsystem and an asynchronous filter contained in the 
6  *      C code of the S-function. The model is used for a target tracking 
7  *      system, utilizing a delayed position update at different time 
8  *      intervals. When the position update (labeled PVNT) is not 
9  *      available, the S-function calls the open-loop filter and stores the 
10  *      results. When the delayed position update arrives, the loop 
11  *      containing the asynchronous filter is run to update the previous 
12  *      data from time tau (corresponding to the PVNT update) to time t 
13  *      (corresponding to the current time) using buffers to store all  
14  *      data. The model takes in parameters from the S-function block in  
15  *      the Simulink model for the maximum amount of delay (seconds) and  
16  *      the desired time step (seconds). The user can easily manipulate 
17  *      these parameters without having to change C code in the S-function 
18  * 
19  *      For more details about S-functions, see 
20  *      matlabroot/simulink/src/sfuntmpl_doc.c 
21  * 
22  *  Copyright 1990-2006 The MathWorks, Inc. 
23  *  $Revision: 1.15.4.3 $ 
24  */ 
25  
26 #define S_FUNCTION_NAME  s_filter_general 
27 #define S_FUNCTION_LEVEL 2 
28  
29 #include "simstruc.h" 
30  
31 #include <stdlib.h> 
32 #include <stdio.h> 
33 #include <string.h> 
34 #include <math.h> 
35  
36  
37 /* Input Arguments */ 
38 /*takes in parameters that define a max value for the PVNT update delay and  
39  *the desired time step*/ 
40 #define MAX_DELAY               ssGetSFcnParam(S,0) 
41 #define TIME_STEP               ssGetSFcnParam(S,1) 
42  
43 /*converts the above parameters from structs to allow them to be used in 
44  *computations*/ 
45 #define dT                    ((real_T) mxGetPr(TIME_STEP)[0]) 
46 #define DELAY_MAX           ((real_T) mxGetPr(MAX_DELAY)[0]) 
47  
48 /*defines and global constant that is used to prevent buffer overflow*/ 
49 #define MAX_INDEX           (DELAY_MAX/dT) 
50  
51  
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52 /* Function: Euler_integration ============================================ 
53  * Abstract: 
54  *  Performs asynchronous forward Euler integration once the PVNT update is 
55  *  received in order to rewrite over the previous data from time tau to 
56  *  time t. 
57  */ 
58 void Euler_integration(double k1, double k2, float delta_x_tou, float delta_y_tou, float 

delta_z_tou, float time_step, real_T *new_Px_est_tou, real_T *new_Vx_est_tou, real_T 
*new_Py_est_tou, real_T *new_Vy_est_tou, real_T *new_Pz_est_tou, real_T 
*new_Vz_est_tou, real_T *temp_new_Px_est_tou, real_T *temp_new_Vx_est_tou, 
real_T *temp_new_Py_est_tou, real_T *temp_new_Vy_est_tou, real_T 
*temp_new_Pz_est_tou, real_T *temp_new_Vz_est_tou) 

59 { 
60     /*performs asynchronous double integration with a time step 
61      *equal to dT seconds and stores the results in a temp variable 
62      *to be transferred to the buffers after they have been 
63      *incremented*/ 
64       
65 *temp_new_Px_est_tou = *new_Px_est_tou+ (*new_Vx_est_tou + 

k1*delta_x_tou)*time_step; 
66     *temp_new_Vx_est_tou = *new_Vx_est_tou+ (k2*delta_x_tou)*time_step; 
67              
68 *temp_new_Py_est_tou = *new_Py_est_tou+ (*new_Vy_est_tou + 

k1*delta_y_tou)*time_step; 
69     *temp_new_Vy_est_tou = *new_Vy_est_tou+ (k2*delta_y_tou)*time_step; 
70             
71 *temp_new_Pz_est_tou = *new_Pz_est_tou+ (*new_Vz_est_tou + 

k1*delta_z_tou)*time_step; 
72     *temp_new_Vz_est_tou = *new_Vz_est_tou+ (k2*delta_z_tou)*time_step; 
73 }     
74      
75      
76 /* Function: mdlInitializeSizes =========================================== 
77  * Abstract: 
78  *    Setup sizes of the various vectors. 
79  */ 
80 static void mdlInitializeSizes(SimStruct *S) 
81 {     
82     ssSetNumSFcnParams(S, 2);  /* Number of expected parameters */ 
83     if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))  
84     { 
85         return; /* Parameter mismatch will be reported by Simulink */ 
86     } 
87  
88     ssSetNumContStates(S, 0);               /*defines 0 continuous states*/ 
89     ssSetNumDiscStates(S, 11);               /*defines 11 discrete states*/ 
90  
91     if (!ssSetNumInputPorts(S, 11)) return;  /*defines 11 input ports*/ 
92     ssSetInputPortWidth(S, 0, 1);           /*sets input 1 port size to 1*/ 
93     ssSetInputPortWidth(S, 1, 1);           /*sets input 2 port size to 1*/ 
94     ssSetInputPortWidth(S, 2, 1);           /*sets input 3 port size to 1*/ 
95     ssSetInputPortWidth(S, 3, 1);           /*sets input 4 port size to 1*/ 
96     ssSetInputPortWidth(S, 4, 1);           /*sets input 5 port size to 1*/ 
97     ssSetInputPortWidth(S, 5, 1);           /*sets input 6 port size to 1*/ 
98     ssSetInputPortWidth(S, 6, 1);           /*sets input 7 port size to 1*/ 
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99     ssSetInputPortWidth(S, 7, 1);           /*sets input 8 port size to 1*/ 
100     ssSetInputPortWidth(S, 8, 1);           /*sets input 9 port size to 1*/ 
101     ssSetInputPortWidth(S, 9, 1);           /*sets input 10 port size to 1*/ 
102     ssSetInputPortWidth(S, 10, 1);         /*sets input 11 port size to 1*/ 
103     ssSetInputPortDirectFeedThrough(S, 0, 1); 
104     ssSetInputPortDirectFeedThrough(S, 1, 1); 
105     ssSetInputPortDirectFeedThrough(S, 2, 1); 
106     ssSetInputPortDirectFeedThrough(S, 3, 1); 
107     ssSetInputPortDirectFeedThrough(S, 4, 1); 
108     ssSetInputPortDirectFeedThrough(S, 5, 1);     
109     ssSetInputPortDirectFeedThrough(S, 6, 1);     
110     ssSetInputPortDirectFeedThrough(S, 7, 1);     
111     ssSetInputPortDirectFeedThrough(S, 8, 1);     
112     ssSetInputPortDirectFeedThrough(S, 9, 1); 
113     ssSetInputPortDirectFeedThrough(S, 10, 1); 
114          
115     if (!ssSetNumOutputPorts(S,8)) return; 
116     ssSetOutputPortWidth(S, 0, 1);      /*sets output port 1 width to 1*/ 
117     ssSetOutputPortWidth(S, 1, 1);      /*sets output port 2 width to 1*/ 
118     ssSetOutputPortWidth(S, 2, 1);      /*sets output port 3 width to 1*/ 
119     ssSetOutputPortWidth(S, 3, 1);      /*sets output port 4 width to 1*/ 
120     ssSetOutputPortWidth(S, 4, 1);      /*sets output port 5 width to 1*/ 
121     ssSetOutputPortWidth(S, 5, 1);      /*sets output port 6 width to 1*/ 
122     ssSetOutputPortWidth(S, 6, 1);      /*sets output port 7 width to 1*/ 
123     ssSetOutputPortWidth(S, 7, 1);      /*sets output port 8 width to 1*/ 
124      
125     ssSetNumSampleTimes(    S, 1); 
126     ssSetNumRWork(          S, 6);       /*real vector*/ 
127     ssSetNumIWork(          S, 2);       /*integer vector*/ 
128     ssSetNumPWork(          S, 15);     /*pointer vector*/ 
129     ssSetNumModes(          S, 0);       /*mode vector*/ 
130     ssSetNumNonsampledZCs(  S, 0);       /*number of zero crossings*/ 
131  
132     /* Take care when specifying exception free code - see sfuntmpl_doc.c */ 
133     ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE); 
134 } 
135  
136  
137 /* Function: mdlInitializeSampleTimes =================================== 
138  * Abstract: 
139  *    Discrete sample time of dT seconds and specify that we are doing 
140  *    function-call's on the 1st element of the 1st output port. 
141  */ 
142 static void mdlInitializeSampleTimes(SimStruct *S) 
143 { 
144     ssSetSampleTime(S, 0, dT);     /*sets sample time to dT seconds*/ 
145     ssSetOffsetTime(S, 0, 0.0);       /*indicates 0 offset time*/ 
146      
147     ssSetCallSystemOutput(S,0);     /* call on first element */ 
148     ssSetModelReferenceSampleTimeDefaultInheritance(S); 
149 } 
150  
151  
152 /*Function: mdlStart ==================================================== 
153  *Abstract: 
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154  *    This function sets up the variables passed between the function and 
155  *    the s-function. 
156  */ 
157 #define MDL_START 
158  
159 static void mdlStart(SimStruct *S) 
160 {     
161     int_T index, integrator_flag; 
162     real_T initial_x_position, initial_y_position, initial_z_position; 
163     real_T initial_x_velocity, initial_y_velocity, initial_z_velocity; 
164      
165     /*The four real_T variables below denote the buffers used to store 
166      *velocity and position data over multiple iterations of the  
167      *s-function*/ 
168 real_T *velocity_x_data, *position_x_data, *velocity_y_data, *position_y_data, 

*velocity_z_data, *position_z_data; 
169 real_T *new_Vx_est_tou, *new_Px_est_tou, *new_Vy_est_tou, *new_Py_est_tou, 

*new_Vz_est_tou, *new_Pz_est_tou; 
170     real_T *x_PVNT_data, *y_PVNT_data, *z_PVNT_data; 
171      
172     /*The buffers are allocated enough memory to store 'MAX_INDEX' data 
173      *with each data space being 'real_T' size. The 'calloc' command also 
174      *initializes the buffers*/ 
175     velocity_x_data        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
176     position_x_data        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
177     velocity_y_data        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
178     position_y_data        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
179     velocity_z_data        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
180     position_z_data        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
181     new_Vx_est_tou        = (real_T *) calloc(MAX_INDEX, sizeof(real_T));     
182     new_Px_est_tou        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
183     new_Vy_est_tou        = (real_T *) calloc(MAX_INDEX, sizeof(real_T));     
184     new_Py_est_tou        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
185     new_Vz_est_tou        = (real_T *) calloc(MAX_INDEX, sizeof(real_T));     
186     new_Pz_est_tou        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
187     x_PVNT_data            = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
188     y_PVNT_data            = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
189     z_PVNT_data            = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
190      
191     index = 0;                               /*initializes index to 0*/ 
192     integrator_flag = 0;                //sets integration reset flag to 0 
193      
194     initial_x_velocity = 0.0;           //initializes position and velocity 
195     initial_y_velocity = 0.0;           //IC's to 0 
196     initial_z_velocity = 0.0; 
197     initial_x_position = 0.0;              
198     initial_y_position = 0.0;              
199     initial_z_position = 0.0;                  
200 
201  
202     /*Sets the pointer work variables for the buffers*/ 
203     ssSetPWorkValue(S, 0, (real_T *)velocity_x_data); 
204     ssSetPWorkValue(S, 1, (real_T *)position_x_data); 
205     ssSetPWorkValue(S, 2, (real_T *)velocity_y_data); 
206     ssSetPWorkValue(S, 3, (real_T *)position_y_data); 
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207     ssSetPWorkValue(S, 4, (real_T *)velocity_z_data); 
208     ssSetPWorkValue(S, 5, (real_T *)position_z_data); 
209  
210     ssSetPWorkValue(S, 6, (real_T *)new_Vx_est_tou); 
211     ssSetPWorkValue(S, 7, (real_T *)new_Px_est_tou);     
212     ssSetPWorkValue(S, 8, (real_T *)new_Vy_est_tou); 
213     ssSetPWorkValue(S, 9, (real_T *)new_Py_est_tou); 
214     ssSetPWorkValue(S, 10, (real_T *)new_Vz_est_tou); 
215     ssSetPWorkValue(S, 11, (real_T *)new_Pz_est_tou);  
216      
217     ssSetPWorkValue(S, 12, (real_T *)x_PVNT_data); 
218     ssSetPWorkValue(S, 13, (real_T *)y_PVNT_data); 
219     ssSetPWorkValue(S, 14, (real_T *)z_PVNT_data); 
220      
221     ssSetIWorkValue(S, 0, index);          /*sets the first integer work  
222                                                           *value to the index variable*/ 
223     ssSetIWorkValue(S, 1, integrator_flag);  /*sets the second integer work 
224                                                  *value to the integrator flag*/ 
225     ssSetRWorkValue(S, 0, initial_x_velocity);  /*sets the real work values*/ 
226     ssSetRWorkValue(S, 1, initial_x_position); 
227     ssSetRWorkValue(S, 2, initial_y_velocity); 
228     ssSetRWorkValue(S, 3, initial_y_position); 
229     ssSetRWorkValue(S, 4, initial_z_velocity); 
230     ssSetRWorkValue(S, 5, initial_z_position); 
231 } 
232  
233  
234 /* Function: mdlOutputs ================================================= 
235  * Abstract: 
236  *    Issue ssCallSystemWithTid on 1st output element of 1st output port 
237  *    and then update 2nd output port with the state. 
238  */ 
239 static void mdlOutputs(SimStruct *S, int_T tid) 
240 { 
241     /*S-function input and output declarations*/ 
242     real_T               *Vx_est          = ssGetRealDiscStates(S,0); 
243     real_T               *Px_est          = ssGetRealDiscStates(S,1); 
244     real_T               *Vy_est          = ssGetRealDiscStates(S,2); 
245     real_T                         *Vz_est          = ssGetRealDiscStates(S,4); 
247     real_T               *Pz_est          = ssGetRealDiscStates(S,5);     
248     real_T               *PVNT           = ssGetRealDiscStates(S,6); 
249     real_T               *x_ro            = ssGetRealDiscStates(S,7); 
250     real_T               *y_ro            = ssGetRealDiscStates(S,8); 
251     real_T               *z_ro            = ssGetRealDiscStates(S,9);     
252     real_T               *clock          = ssGetRealDiscStates(S,10);  
253     InputRealPtrsType    Vx_est_Ptrs      = ssGetInputPortRealSignalPtrs(S,0); 
254     InputRealPtrsType    Px_est_Ptrs      = ssGetInputPortRealSignalPtrs(S,1); 
255     InputRealPtrsType    Vy_est_Ptrs      = ssGetInputPortRealSignalPtrs(S,2); 
256     InputRealPtrsType    Py_est_Ptrs      = ssGetInputPortRealSignalPtrs(S,3); 
257     InputRealPtrsType    Vz_est_Ptrs      = ssGetInputPortRealSignalPtrs(S,4); 
258     InputRealPtrsType    Pz_est_Ptrs      = ssGetInputPortRealSignalPtrs(S,5);     
259     InputRealPtrsType    PVNT_Ptrs       = ssGetInputPortRealSignalPtrs(S,6); 
260     InputRealPtrsType    x_ro_Ptrs        = ssGetInputPortRealSignalPtrs(S,7); 
261     InputRealPtrsType    y_ro_Ptrs        = ssGetInputPortRealSignalPtrs(S,8); 
262     InputRealPtrsType    z_ro_Ptrs        = ssGetInputPortRealSignalPtrs(S,9); 
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263     InputRealPtrsType    clock_Ptrs       = ssGetInputPortRealSignalPtrs(S,10); 
264     real_T                       *TgtVx_IC         = ssGetOutputPortRealSignal(S,1); 
265     real_T                       *TgtPx_IC         = ssGetOutputPortRealSignal(S,2); 
266     real_T                        *TgtVy_IC         = ssGetOutputPortRealSignal(S,3); 
267     real_T                        *TgtPy_IC         = ssGetOutputPortRealSignal(S,4); 
268     real_T                        *TgtVz_IC         = ssGetOutputPortRealSignal(S,5); 
269     real_T                        *TgtPz_IC         = ssGetOutputPortRealSignal(S,6); 
270     real_T                        *integrator_reset = ssGetOutputPortRealSignal(S,7); 
271      
272     int_T index, integrator_flag; 
273     real_T initial_x_position, initial_y_position, initial_z_position; 
274     real_T initial_x_velocity,  initial_y_velocity,  initial_z_velocity; 
275 real_T temp_new_Vx_est_tou, temp_new_Px_est_tou, temp_new_Vy_est_tou, 

temp_new_Py_est_tou, temp_new_Vz_est_tou, temp_new_Pz_est_tou; 
276  
277     /*buffer declarations for mdlOutputs*/ 
278 real_T *velocity_x_data, *position_x_data, *velocity_y_data, *position_y_data,     

*velocity_z_data, *position_z_data; 
279 real_T *new_Vx_est_tou, *new_Px_est_tou, *new_Vy_est_tou, *new_Py_est_tou, 

*new_Vz_est_tou, *new_Pz_est_tou; 
280     real_T *x_PVNT_data, *y_PVNT_data, *z_PVNT_data;    
281      
282     /*defines pointer to output file for forward Euler integration results*/ 
283 //     FILE *Euler_output_data; 
284      
285     /*defines intermediate postion and velocity matrices*/ 
286     float delta_x_tou = 0.0, delta_y_tou = 0.0, delta_z_tou = 0.0; 
287     float time_index = 0.0, delay = 0.0, time_step = dT; 
288     int i = 0;                /*counter*/ 
289     int reset_index = 0;      /*flag indicating and index reset to 0*/ 
290     double k1=0.5, k2=0.5;   /*sets integrator gains*/ 
291  
292     /* 
293      * ssCallSystemWithTid is used to execute a function-call subsystem. The 
294      * 2nd argument is the element of the 1st output port index which 
295      * connected to the function-call subsystem. Function-call subsystems 
296      * can be driven by the first output port of s-function blocks. 
297      */ 
298      
299     UNUSED_ARG(tid); /* not used in single tasking mode */ 
300      
301     /*Retrieves the pointer work values for the buffers*/ 
302     velocity_x_data        = (real_T *)ssGetPWorkValue(S, 0); 
303     position_x_data        = (real_T *)ssGetPWorkValue(S, 1); 
304     velocity_y_data        = (real_T *)ssGetPWorkValue(S, 2); 
305     position_y_data        = (real_T *)ssGetPWorkValue(S, 3); 
306     velocity_z_data        = (real_T *)ssGetPWorkValue(S, 4); 
307     position_z_data        = (real_T *)ssGetPWorkValue(S, 5);     
308      
309     new_Vx_est_tou      = (real_T *)ssGetPWorkValue(S, 6); 
310     new_Px_est_tou      = (real_T *)ssGetPWorkValue(S, 7); 
311     new_Vy_est_tou       = (real_T *)ssGetPWorkValue(S, 8); 
312     new_Py_est_tou       = (real_T *)ssGetPWorkValue(S, 9); 
313     new_Vz_est_tou       = (real_T *)ssGetPWorkValue(S, 10); 
314     new_Pz_est_tou       = (real_T *)ssGetPWorkValue(S, 11); 
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315      
316     x_PVNT_data          = (real_T *)ssGetPWorkValue(S, 12); 
317     y_PVNT_data          = (real_T *)ssGetPWorkValue(S, 13); 
318     z_PVNT_data          = (real_T *)ssGetPWorkValue(S, 14); 
319          
320     /*Retrieves integer and real work values*/ 
321     index                    = ssGetIWorkValue(S,0); 
322     integrator_flag      = ssGetIWorkValue(S,1); 
323     initial_x_velocity   = ssGetRWorkValue(S,0); 
324     initial_x_position   = ssGetRWorkValue(S,1); 
325     initial_y_velocity   = ssGetRWorkValue(S,2); 
326     initial_y_position   = ssGetRWorkValue(S,3); 
327     initial_z_velocity   = ssGetRWorkValue(S,4); 
328     initial_z_position   = ssGetRWorkValue(S,5); 
329      
330     /*creates .txt file for output results*/ 
331 //     Euler_output_data = fopen("Euler_data_general.txt", "w"); 
332      
333     /*Entire sequence is in an 'if' loop to ensure that there is no  
334      *overflow for the position and velocity arrays (defined with a maximum 
335      *of MAX_INDEX data points.)*/ 
336     if(index <= (int)MAX_INDEX) 
337     { 
338         TgtPx_IC[0] = initial_x_position;   /*sets outputs to initial V and P*/ 
339         TgtVx_IC[0] = initial_x_velocity; 
340         TgtPy_IC[0] = initial_y_position; 
341         TgtVy_IC[0] = initial_y_velocity; 
342         TgtPz_IC[0] = initial_z_position; 
343         TgtVz_IC[0] = initial_z_velocity;         
344          
345         integrator_reset[0] = integrator_flag;  /*sets output 3 to integration 
346                                                       *reset flag*/ 
347          
348         if(!ssCallSystemWithTid(S,0,tid))     /*calls system with task ID 1*/ 
349         { 
350             /* Error occurred which will be reported by Simulink */ 
351                 return; 
352         } 
353          
354         Vx_est_Ptrs     = ssGetInputPortRealSignalPtrs(S,0);  /*Gets inputs*/ 
355         Px_est_Ptrs     = ssGetInputPortRealSignalPtrs(S,1); 
356         Vy_est_Ptrs     = ssGetInputPortRealSignalPtrs(S,2); 
357         Py_est_Ptrs     = ssGetInputPortRealSignalPtrs(S,3); 
358         Vz_est_Ptrs     = ssGetInputPortRealSignalPtrs(S,4); 
359         Pz_est_Ptrs     = ssGetInputPortRealSignalPtrs(S,5); 
360          
361         /*assigns the position and velocity data to the buffers*/ 
362         *position_x_data = (real_T)*Px_est_Ptrs[0]; 
363         *velocity_x_data = (real_T)*Vx_est_Ptrs[0]; 
364         *position_y_data = (real_T)*Py_est_Ptrs[0]; 
365         *velocity_y_data = (real_T)*Vy_est_Ptrs[0]; 
366         *position_z_data = (real_T)*Pz_est_Ptrs[0]; 
367         *velocity_z_data = (real_T)*Vz_est_Ptrs[0];         
368          
369         /*resets the initial velocity and position values*/ 
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370         initial_x_velocity = ssSetRWorkValue(S, 0, (real_T)*Vx_est_Ptrs[0]); 
371         initial_x_position = ssSetRWorkValue(S, 1, (real_T)*Px_est_Ptrs[0]); 
372         initial_y_velocity = ssSetRWorkValue(S, 2, (real_T)*Vy_est_Ptrs[0]); 
373         initial_y_position = ssSetRWorkValue(S, 3, (real_T)*Py_est_Ptrs[0]); 
374         initial_z_velocity = ssSetRWorkValue(S, 4, (real_T)*Vz_est_Ptrs[0]); 
375         initial_z_position = ssSetRWorkValue(S, 5, (real_T)*Pz_est_Ptrs[0]); 
376          
377         /*resets the integrator reset to 0*/ 
378         integrator_flag = ssSetIWorkValue(S, 1, 0); 
379          
380         x_ro_Ptrs = ssGetInputPortRealSignalPtrs(S,7); /*takes in ro_star value*/ 
381         y_ro_Ptrs = ssGetInputPortRealSignalPtrs(S,8); 
382         z_ro_Ptrs = ssGetInputPortRealSignalPtrs(S,9); 
383          
384         /*assigns coordinates to buffers*/ 
385         *x_PVNT_data = (real_T)*x_ro_Ptrs[0]; 
386         *y_PVNT_data = (real_T)*y_ro_Ptrs[0]; 
387         *z_PVNT_data = (real_T)*z_ro_Ptrs[0]; 
388     } 
389      
390     if ((real_T)*PVNT_Ptrs[0] >= 0.99) 
391     /*indicates pulse is high (PVNT update present)*/ 
392     { 
393         /*calls the estimated position and velocity values at time tou from 
394          *the buffers*/ 
395         position_x_data = position_x_data - index; 
396         velocity_x_data = velocity_x_data - index; 
397         position_y_data = position_y_data - index; 
398         velocity_y_data = velocity_y_data - index; 
399         position_z_data = position_z_data - index; 
400         velocity_z_data = velocity_z_data - index; 
401          
402         x_PVNT_data = x_PVNT_data - index; 
403         y_PVNT_data = y_PVNT_data - index; 
404         z_PVNT_data = z_PVNT_data - index;  
405          
406         /*calculates the difference between the ro_star update value and the 
407          *estimated ro value at time tou*/ 
408         delta_x_tou = *x_PVNT_data - *position_x_data; 
409         delta_y_tou = *y_PVNT_data - *position_y_data; 
410         delta_z_tou = *z_PVNT_data - *position_z_data;         
411          
412         /*sets up the initial conditions based on the x,y,z input from the  
413          *PVNT update*/ 
414         *new_Px_est_tou = *x_PVNT_data; 
415         *new_Vx_est_tou = *velocity_x_data; 
416         *new_Py_est_tou = *y_PVNT_data; 
417         *new_Vy_est_tou = *velocity_y_data; 
418         *new_Pz_est_tou = *z_PVNT_data; 
419         *new_Vz_est_tou = *velocity_z_data; 
420          
421         /*sets up time output for Euler_data file*/ 
422         delay = index; 
423         time_index = *clock_Ptrs[0] - (delay * dT); 
424          
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425         for (i=0; i<index; i++)          /*increments counter from 0 to the 
426                                            *maximum value of the index*/ 
427         {        
428             if (i != 0)                  /*allows normal integration after first iteration*/ 
429             { 
430                 delta_x_tou = 0.0; 
431                 delta_y_tou = 0.0; 
432                 delta_z_tou = 0.0; 
433             } 
434                                             
435 Euler_integration(k1, k2, delta_x_tou, delta_y_tou, delta_z_tou, time_step, 

new_Px_est_tou, new_Vx_est_tou, new_Py_est_tou, new_Vy_est_tou, 
new_Pz_est_tou, new_Vz_est_tou, &temp_new_Px_est_tou, 
&temp_new_Vx_est_tou, &temp_new_Py_est_tou, &temp_new_Vy_est_tou, 
&temp_new_Pz_est_tou, &temp_new_Vz_est_tou); 

436  
437             /*increments the new_ro_est_tou and new_V_sca_est_tou buffer 
438              *pointers*/ 
439             new_Px_est_tou++; 
440             new_Vx_est_tou++; 
441             new_Py_est_tou++; 
442             new_Vy_est_tou++; 
443             new_Pz_est_tou++; 
444             new_Vz_est_tou++; 
445              
446             /*sets the now incremented buffers equal to the results from 
447              *the forward Euler integration*/ 
448             *new_Px_est_tou = temp_new_Px_est_tou; 
449             *new_Vx_est_tou = temp_new_Vx_est_tou; 
450             *new_Py_est_tou = temp_new_Py_est_tou; 
451             *new_Vy_est_tou = temp_new_Vy_est_tou; 
452             *new_Pz_est_tou = temp_new_Pz_est_tou; 
453             *new_Vz_est_tou = temp_new_Vz_est_tou; 
454              
455             /*prints Euler integration data to the output file for later 
456              *comparison to actual target data*/ 
457 //          fprintf(Euler_output_data, "%f %f %f %f %f %f %f \n", time_index, 

(float)*new_Px_est_tou, (float)*new_Py_est_tou, (float)*new_Pz_est_tou, 
(float)*new_Vx_est_tou, (float)*new_Vy_est_tou, (float)*new_Vz_est_tou); 

458  time_index = time_index + dT; 
459         } 
460  
461         /*resets the initial velocity and position values that will go to  
462          *the open loop filter during the next function iteration.*/ 
463         initial_x_velocity = ssSetRWorkValue(S, 0, *new_Vx_est_tou); 
464         initial_x_position = ssSetRWorkValue(S, 1, *new_Px_est_tou); 
465         initial_y_velocity = ssSetRWorkValue(S, 2, *new_Vy_est_tou); 
466         initial_y_position = ssSetRWorkValue(S, 3, *new_Py_est_tou); 
467         initial_z_velocity = ssSetRWorkValue(S, 4, *new_Vz_est_tou); 
468         initial_z_position = ssSetRWorkValue(S, 5, *new_Pz_est_tou); 
469                  
470         reset_index = 1;    /*triggers flag to indicate that an index 
471                            *reset is needed*/ 
472  
473         integrator_flag = ssSetIWorkValue(S, 1, 1); /*triggers open loop 
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474                                                        *integrator reset*/ 
475     } 
476      
477     if((index <= (int)MAX_INDEX) && (reset_index==0)) 
478     { 
479         index = ssSetIWorkValue(S, 0, index+1); /*increments index value*/ 
480         velocity_x_data++;                               /*increments buffer pointers*/ 
481         position_x_data++; 
482         velocity_y_data++; 
483         position_y_data++; 
484         velocity_z_data++; 
485         position_z_data++; 
486         x_PVNT_data++; 
487         y_PVNT_data++; 
488         z_PVNT_data++; 
489     } 
490      
491     else  
492     { 
493       new_Px_est_tou=new_Px_est_tou-index; 
494       new_Vx_est_tou=new_Vx_est_tou-index; 
495       new_Py_est_tou=new_Py_est_tou-index; 
496       new_Vy_est_tou=new_Vy_est_tou-index; 
497       new_Pz_est_tou=new_Pz_est_tou-index; 
498       new_Vz_est_tou=new_Vz_est_tou-index; 
499        
500       index = ssSetIWorkValue(S, 0, 0);  /*resets index value to 0*/       
501     } 
502      
503     /*resets the pointer work values for the velocity_data and  
504      *position_data buffers*/ 
505     ssSetPWorkValue(S, 0, (real_T *)velocity_x_data); 
506     ssSetPWorkValue(S, 1, (real_T *)position_x_data); 
507     ssSetPWorkValue(S, 2, (real_T *)velocity_y_data); 
508     ssSetPWorkValue(S, 3, (real_T *)position_y_data); 
509     ssSetPWorkValue(S, 4, (real_T *)velocity_z_data); 
510     ssSetPWorkValue(S, 5, (real_T *)position_z_data); 
511      
512     ssSetPWorkValue(S, 12, (real_T *)x_PVNT_data); 
513     ssSetPWorkValue(S, 13, (real_T *)y_PVNT_data); 
514     ssSetPWorkValue(S, 14, (real_T *)z_PVNT_data); 
515 } 
516  
517  
518 /* Function: mdlUpdate ================================================= 
519  * Abstract: 
520  *    Increment the state for next time around (i.e. a counter). 
521  */ 
522 #define MDL_UPDATE 
523 static void mdlUpdate(SimStruct *S, int_T tid) 
524 { 
525          
526     UNUSED_ARG(tid); /* not used in single tasking mode */ 
527  
528 } 
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529  
530  
531 /* Function: mdlTerminate =============================================== 
532  * Abstract: 
533  *    Required to have this routine. 
534  */ 
535 static void mdlTerminate(SimStruct *S) 
536 { 
537     real_T *velocity_x_data       = ssGetPWorkValue(S, 0); 
538     real_T *position_x_data       = ssGetPWorkValue(S, 1); 
539     real_T *velocity_y_data       = ssGetPWorkValue(S, 2); 
540     real_T *position_y_data       = ssGetPWorkValue(S, 3); 
541     real_T *velocity_z_data       = ssGetPWorkValue(S, 4); 
542     real_T *position_z_data       = ssGetPWorkValue(S, 5); 
543      
544     real_T *new_Vx_est_tou        = ssGetPWorkValue(S, 6); 
545     real_T *new_Px_est_tou        = ssGetPWorkValue(S, 7); 
546     real_T *new_Vy_est_tou        = ssGetPWorkValue(S, 8); 
547     real_T *new_Py_est_tou        = ssGetPWorkValue(S, 9); 
548     real_T *new_Vz_est_tou        = ssGetPWorkValue(S, 10); 
549     real_T *new_Pz_est_tou        = ssGetPWorkValue(S, 11); 
550      
551     real_T *x_PVNT_data           = ssGetPWorkValue(S, 12); 
552     real_T *y_PVNT_data           = ssGetPWorkValue(S, 13); 
553     real_T *z_PVNT_data           = ssGetPWorkValue(S, 14);     
554      
555 //     FILE *Euler_output_data; 
556      
557     UNUSED_ARG(S); /* unused input argument */ 
558  
559     /*releases data stored in buffers*/ 
560     free(velocity_x_data); 
561     free(position_x_data); 
562     free(velocity_y_data); 
563     free(position_y_data); 
564     free(velocity_z_data); 
565     free(position_z_data); 
566     free(new_Vx_est_tou); 
567     free(new_Px_est_tou); 
568     free(new_Vy_est_tou); 
569     free(new_Py_est_tou); 
570     free(new_Vz_est_tou); 
571     free(new_Pz_est_tou); 
572     free(x_PVNT_data); 
573     free(y_PVNT_data); 
574     free(z_PVNT_data);     
575      
576     /*closes Euler integration data output file*/ 
577 //     fclose(Euler_output_data); 
578 } 
579  
580 #ifdef  MATLAB_MEX_FILE     /* Is this file being compiled as a MEX-file? */ 
581 #include "simulink.c"       /* MEX-file interface mechanism */ 
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582 #else 
583 #include "cg_sfun.h"        /* Code generation registration function */ 
584 #endif 
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B. ROAD FOLLOWING FILTER S-FUNCTION 

The road following filter is similar in method to the general filter but contains two 

major differences. First, the S-function receives the PVNT update input just like the 

general filter S-function, but it utilizes an optimization routine before passing the position 

update on to the remainder of the program. Since the filter can use the road equations in 

its calculations, it is able to calculate the best position update in terms of the road 

parameter, ρ . The optimization function uses a dichotomy method to quickly and 

accurately find the best ρ  value pertaining to the PVNT x, y, z input. The dichotomy 

method divides the area of the road it is to search in half and uses a step size to define 

two points on either side of the halfway mark. The function then calculates and compares 

the distance from these points to the inputted PVNT update. Using the results, the 

function will reset either the lower or upper boundary and repeat the calculations until a 

pre-determined tolerance is met. This results in a routine that is much faster than and just 

as accurate as calculating and comparing distances from each point within a given range 

along the road to the inputted PVNT update.  

The second main difference between the filters is that all of the integration 

calculations are done using ρ and velocity instead of the x, y, and z coordinates and 

magnitudes. Once again, this is only possible because the road equations are known 

before the system is simulated. 

 

1. Manual 

File: s_filter_road_following.c 

 

Lines 26-57 

Complete basic program initializations, library calls, and global variable input.  

Lines 26 and 27 

Designate the file name and indicate that the file is in C code, to be converted into 

MEX format and run in MATLAB.  
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Lines 29-34 

Make all the necessary library calls that are required in the program.  

Lines 40-42 

Take in the three S-function parameters: MAX_DELAY, TIME_STEP, and 

ROAD_EQUATION from the S-function block in the Simulink model. 

MAX_DELAY is the maximum amount of expected delay in between PVNT 

updates while TIME_STEP is the time step to be used by the C code. NOTE: The 

time step parameter value must match the discrete time step value found on the 

simulation parameters menu in Simulink. The ROAD_EQUATION parameter is 

used to define which road model equations are used in the optimization function 

(there were two different road models used during initial simulation and testing). 

Lines 46-48 

Convert the parameters into “real_T” format for use in numerical calculations 

later. 

Line 52 

Defines the global variable MAX_INDEX, used to ensure that buffer overflow 

does not occur. 

Lines 53-56  

Define the coefficients for the third order road model and the radius of the circle 

(meters) for the circular road model. 

Line 57  

Defines pi as a constant for used in the phase shift of the circular road model 

equations found in the optimization function (see lines 103 and 107) 

 

PVNT_optimization function 

Line 69  

Lists the inputs to the function along with buffers marked by an asterisk in front 

of their names. 
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Lines 71-76 

Define and initialize the variables that are only used inside the function such as 

the upper and lower bounds and the desired tolerance of the final result. 

Lines 79-80 

Initialize the upper and lower bounds before the dichotomy loop. The 

ro_optimize_start real work value is taken in from the mdlOutputs function (see 

line 455). 

Lines 85-126 

Contain the dichotomy loop. 

Line 85 

Defines limits the amount of loop iterations to 100 and dictates that the loop 

should continue until the required tolerance is met. 

Lines 87-88 

Define the upper and lower ρ  limits by dividing the search area of the road in 

half and adding and subtracting the step size. 

Lines 90-99 

Compute the position points along the road based on the upper and lower ρ limits 

if the third order road model is being used based on the inputted parameter from 

line 42. 

Lines 101-110 

Compute the position points along the road based on the upper and lower ρ limits 

if the circular road model is being used based on the inputted parameter from line 

42. 

Lines 112-113 

Use the distance formula to compute the distance between the PVNT position 

input and the calculated position points. 

The if/else loops in lines 115-122 compare the distance values and, based on the 

results, reset the right or left boundary to one of the ρ limits. 

Lines 124 and 125 
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Compute the current tolerance and increments the counter pertaining to the while 

loop. 

Line 127  

Sends out the new ρ  update value following successful completion of the 

dichotomy loop. 

 

Euler_integration function: 

Line 137 

Lists the inputs to the function along with buffers marked by an asterisk in front 

of their names.  

Lines 144-145  

Perform forward Euler integration for the ρ  variable, assigning the new position 

and velocity values to the buffers beginning with “temp.” 

 

mdlInitializeSizes function 

Line 155  

Means that there will be three parameters inputted into the S-function block in 

Simulink 

Lines 156-159  

Return an error to MATLAB if the incorrect number of parameters is found.  

Line 161 

Defines zero continuous states since the model is running with a preset, fixed step 

time.  

Line 162 

Defines seven discrete states which must match the number of input ports found 

in line 164.  

Lines 165-171 

Set the size of each input port. 

Lines 172-178  

Denote each input port as a direct feed through port.  
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Line 180  

Defines four output ports from the S-function.  

Lines 181-184 

Define the width of each port.  

Line 186 

Defines one sample time to be used 

Lines 187-190 

Define the number of real, integer, pointer, and mode work vectors to be used in 

the program. The work vectors can be thought of as a value of a certain type (real, 

integer, pointer, etc.) that is stored in persistent memory. This means that the 

value will be stored even while the program is called multiple times.  

Line 191  

Defines the number of zero crossings to be zero as it is not used in the filter 

program. 

 

mdlInitializeSampleTimes function 

Line 205 

Defines the program’s sample time to be set to dT, which come from the second 

parameter input to the S-function block in line 46.  

Line 206 

Indicates a 0.0 second offset time and line 208 indicates that a function call is 

made on the first element of the first output port. 

 

mdlStart function 

Defines all of the variables that need to be initialized only once, i.e. the very first 

time the program is run in the simulation.  

Line 222  

Predefines the integer work vectors for the index counter and the integrator flag 

that indicates when the discrete integrator blocks in the open-loop filter subsystem 

need to be reset.  
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Line 223 

Predefines the real work vectors for the initial x, y, and z positions and velocities.  

Lines 228-230 

Predefine the buffers that are used in the code for data storage 

Lines 235-241 

Initialize the buffers to a number of positions equal to MAX_INDEX (from line 

52) with each position having enough memory to store a piece of data with the 

size real_T. The calloc command also initializes every position in the buffers to 

zero.  

Lines 243-247 

Define the first value for the index counter, integrator reset flag, position and 

velocity initial conditions, and the starting ρ  variable for the optimization 

function to be zero.  

Lines 251-257  

Set the pointer work vectors to point to the first position of each of the buffers  

Lines 259-267  

Set and store the initial integer and real work values. 

 

mdlOutputs function 

Lines 278-294 

Contain the input and output declarations.  

Lines 278-279 and 285-286  

Define the pointers and values of the position and velocity estimates coming from 

the open loop filter function call.  

Lines 280 and 287 

Define the pointer and value coming in from the PVNT update delay subsystem 

Lines 281-283 and 288-290 

Define the actual PVNT update (x,y,z) from the target model subsystem. 

Lines 284 and 291 

Designate a port for the clock input.  
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Lines 292-293 

Define output ports for the position and velocity initial conditions to the open-

loop filter function call. 

Line 294  

Defines the integrator reset signal, which is also fed into the open-loop filter 

function call.  

Lines 296-303 

Contain declarations for the work values and the buffers which match the 

declarations found in the mdlStart function.  

Lines 309-319 

Define and initialize the non-persistent variables that are used only in the 

Euler_integration, PVNT_optimization, and mdlOutputs function. 

Lines 331-337 

Retrieves the values that were stored in the pointer work vectors. 

Lines 340-344 

Retrieves the values that were stored in the integer and real work vectors.  

Lines 352-389  

Contained in an if loop that executes only if the index counter is less than or equal 

to the preset MAX_INDEX value. This ensures that no data is written to the 

buffers beyond their maximum preset number of storage positions, reducing the 

risk of buffer overflow.  

Lines 354-355 

Set the second and third output ports to the position and velocity initial 

conditions. 

Line 357 

Sets the integrator_reset output to the integer work value integrator_flag. 

Lines 360-364 

Call the open loop filter function call block in the Simulink diagram through the 

first output port. 

Lines 366-367  
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Take in the estimated position and velocity values from the first six inputs 

(arriving from the outputs of the open-loop filter function call).  

Lines 370-371 

Set the respective buffer values to the inputted position and velocity estimates. 

These values are then also stored in the real work vectors designating position and 

velocity initial conditions.  

Line 378 

Resets the integrator flag integer work value to zero (if it was set to one following 

the Euler integration loop, see line 460).  

Lines 381-383 

Take in the PVNT position update (x,y,z) from the true target model subsystem in 

the Simulink diagram. 

Lines 386-388 

 Assign PVNT position update to buffers. 

Lines 391-447  

Contained in an if loop that is only triggered if the input from the PVNT delay 

subsystem is set high, indicating that a PVNT update is available. 

Lines 397-399  

Adjust the pointers to each PVNT buffer so that they now refer to timeτ . This is 

controlled by the index integer work vector which is incremented after each 

iteration of the mdlOutputs function (see line 471). 

Line 402  

Calls the PVNT_optimization function and receives the new ρ value. 

Lines 407-408 

Adjust the pointers to each position and velocity buffer so that they now refer to 

timeτ , the time to which the PVNT update refers.  

Line 412 

Calculates the difference between the estimated position data at time τ  and the 

PVNT position update at time τ  for ρ .  

Lines 416-417  
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Set up the values for the first position of the buffers that are used in the 

Euler_integration function and to pass on the updated position and velocity data 

to the open-loop filter function call. 

Line 423 

Begins the asynchronous portion of the S-function. The for loop runs enough 

times to move the new estimated position and velocity values from time τ  to time 

t (current system time), which is controlled by the index integer work vector 

value.  

Lines 426-429 

Set the delta variable value originally set in lines 412 to zero after the first 

iteration of the for loop, allowing for normal, dead-reckoning style integration.  

Line 431 

Passes the required variables to the Euler_integration function in lines 131-146. 

Additionally, the “&” in front of the temp buffers indicate that their changed 

values from the Euler_integration function will be saved after the function 

executes.  

Lines 435-436 

Increment the pointer values for the buffers that will contain the updated position 

and velocity estimates. 

Lines 440-441 

Actually set the buffers equal to the updates. 

After the for loop runs the appropriate number of times to arrive at time t, the 

final value from each of the buffers containing the updated position and velocity 

estimates are passed to the initial condition real work vectors in lines 451-452.  

Line 455 

The ro_optimize_start real work value (used in the optimization function) is set. 

Additionally, two integrator reset values are set. The first is the reset_index 

variable on line 457 set equal to one and used inside the S-function program on 

line 464.  
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The second is the integrator_flag integer work value on line 460 that is outputted 

to the open-loop function call outside the S-function block. 

The remainder of the buffer pointer incrementation/resets take place in the if/else 

loop in lines 464-478. The if loop portion checks to see if the current index 

variable value is less that the preset MAX_INDEX value and if the reset_index 

variable value is equal to zero (indicating that a PVNT update did not arrive 

during the current mdlOutputs function iteration. If so, the index integer work 

value is incremented along with the pointers to the position and velocity data 

buffers.  

If the criterion for the if loop are not met, meaning that a PVNT update has 

occurred, the buffer pointers are all reset back to their first position and the index 

integer work value is set to zero. This ensures that the buffers are simply 

overwritten with the new data until the next PVNT update and buffer overflow 

does not occur. Finally, the pointer work values are updated to now designate the 

new pointer values for the position and velocity data buffers. 

Lines 482-486 

Reset the pointer work values for the PVNT, position, and velocity buffers. 

  

mdlUpdate function 

This would be the function in which states would be incremented if they were 

used in the program. Since the filter design does not use theses states, however, 

the mdlUpdate function is only left in the program as a formality. 

 

mdlTerminate function 

In this case, all of the data from the buffers must be cleared to avoid errors when 

re-running the simulation multiple times.  

Lines 510-516 

Designate each of the buffers that were originally defined in the mdlStart function  

Lines 523-529  
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Actually release the data stored in the buffers. 

2. Code 

1 /*  File    : s_filter_road_following.c 
2  *  Abstract: 
3  * 
4  *      This S-function is a combination of an open-loop filter using a  
5  *      function call subsystem and an asynchronous filter contained in the 
6  *      C code of the S-function. The model is used for a target tracking 
7  *      system, utilizing a delayed position update at different time 
8  *      intervals. When the position update (labeled PVNT) is not 
9  *      available, the S-function calls the open-loop filter and stores the 
10  *      results. When the delayed position update arrives, the loop 
11  *      containing the asynchronous filter is run to update the previous 
12  *      data from time tau (corresponding to the PVNT update) to time t 
13  *      (corresponding to the current time) using buffers to store all  
14  *      data. The model takes in parameters from the S-function block in  
15  *      the Simulink model for the maximum amount of delay (seconds) and  
16  *      the desired time step (seconds). The user can easily manipulate 
17  *      these parameters without having to change C code in the S-function 
18  * 
19  *      For more details about S-functions, see 
20  *      matlabroot/simulink/src/sfuntmpl_doc.c 
21  * 
22  *  Copyright 1990-2006 The MathWorks, Inc. 
23  *  $Revision: 1.15.4.3 $ 
24  */ 
25  
26 #define S_FUNCTION_NAME  s_filter_road_following 
27 #define S_FUNCTION_LEVEL 2 
28  
29 #include "simstruc.h" 
30  
31 #include <stdlib.h> 
32 #include <stdio.h> 
33 #include <string.h> 
34 #include <math.h> 
35  
36  
37 /* Input Arguments */ 
38 /*takes in parameters that define a max value for the PVNT update delay and  
39  *the desired time step*/ 
40 #define MAX_DELAY                ssGetSFcnParam(S,0) 
41 #define TIME_STEP                ssGetSFcnParam(S,1) 
42 #define ROAD_EQUATION        ssGetSFcnParam(S,2) 
43  
44 /*converts the above parameters from structs to allow them to be used in 
45  *computations*/ 
46 #define dT                       ((real_T) mxGetPr(TIME_STEP)[0]) 
47 #define DELAY_MAX                ((real_T) mxGetPr(MAX_DELAY)[0]) 
48 #define road_equation_selection ((real_T) mxGetPr(ROAD_EQUATION)[0]) 
49  
50 /*defines global constant that is used to prevent buffer overflow and  
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51  coefficients for road equation*/ 
52 #define MAX_INDEX                (DELAY_MAX/dT) 
53 #define coeff_3                  0.0000192 
54 #define coeff_2                  -0.025 
55 #define coeff_1                  9.74 
56 #define radius                   2865.0 
57 #define pi                        3.14159 
58  
59  
60 /* Function: PVNT_optimization 
61  * Abstract: 
62  *  Performs distance measurment between the original PVNT update  
63  *  coordinates and coordinates defined by the road equation. It then finds 
64  *  the closest point on the road to the PVNT coordinates and sets that  
65  *  point as the actual PVNT position update. The third parameter in the  
66  *  S-function block determines which optimization equation is called  
67  *  based on which road equation is to be used. 
68  */ 
69 void PVNT_optimization (real_T *x_PVNT_data, real_T *y_PVNT_data, real_T 

*z_PVNT_data, real_T ro_optimize_start, real_T *ro_star, int road_eq_selector) 
70 { 
71     float lower_ro_limit=0.0, upper_ro_limit=0.0; 
72     float x_left=0.0, y_left=0.0, z_left=0.0, x_right=0.0, y_right=0.0, z_right=0.0; 
73     float distance_1=0.0, distance_2=0.0, step_size=0.5; 
74     float left_boundary = 0.0, right_boundary = 0.0, tolerance = 0.000001; 
75     float L = 2*tolerance;  /*sets L so it is initially higher than tolerance*/ 
76     int j = 0; 
77  
78     /*initializes upper and lower bounds for optimization loop*/ 
79     left_boundary = (float)ro_optimize_start - 50.0; 
80     right_boundary = (float)ro_optimize_start + 50.0;   
81      
82     /*optimization routine for PVNT update: utilizes dichotomy technique to 
83      *compare distance from points along the road model to PVNT update 
84      *point. final value is outputted as the ro_star update*/ 
85     while (L>=tolerance && j<=100) 
86     { 
87         lower_ro_limit = (right_boundary+left_boundary-step_size)/2.0; 
88         upper_ro_limit = (right_boundary+left_boundary+step_size)/2.0; 
89          
90         if (road_eq_selector == 0) 
91         {        
92             x_left = lower_ro_limit; 
93 y_left = coeff_3*pow(lower_ro_limit,3) + coeff_2*pow(lower_ro_limit,2) + 

coeff_1*lower_ro_limit; 
94             z_left = 0.0; 
95              
96             x_right = upper_ro_limit; 
97 y_right = coeff_3*pow(upper_ro_limit,3) + coeff_2*pow(upper_ro_limit,2) + 

coeff_1*upper_ro_limit; 
98             z_right = 0.0; 
99         } 
100          
101         if (road_eq_selector == 1) 
102         { 
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103             x_left = radius + radius * sin(lower_ro_limit/radius + 3*pi/2); 
104             y_left = radius*sin(lower_ro_limit/radius); 
105             z_left = 0.0; 
106              
107             x_right = radius + radius * sin(upper_ro_limit/radius + 3*pi/2); 
108             y_right = radius*sin(upper_ro_limit/radius); 
109             z_right = 0.0; 
110         } 
111           
112 distance_1 = sqrt(pow(x_left-*x_PVNT_data,2) + pow(y_left-*y_PVNT_data,2) + 

pow(z_left-*z_PVNT_data,2)); 
113 distance_2 = sqrt(pow(x_right-*x_PVNT_data,2) + pow(y_right-*y_PVNT_data,2) + 

pow(z_right-*z_PVNT_data,2)); 
114          
115         if(distance_1 <= distance_2) 
116         { 
117             right_boundary = upper_ro_limit; 
118         } 
119         else 
120         { 
121             left_boundary = lower_ro_limit; 
122         } 
123          
124         L = fabs(distance_1 - distance_2);    /*computes current error*/ 
125         j++;                                   /*increments counter*/ 
126     } 
127     *ro_star = (left_boundary+right_boundary)/2; 
128 } 
129  
130  
131 /* Function: Euler_integration ============================================ 
132  * Abstract: 
133 *  Performs asynchronous forward Euler integration once the PVNT update is 
134  *  received in order to rewrite over the previous data from time tau to 
135  *  time t. 
136  */ 
137 void Euler_integration(double k1, double k2, float delta_ro_tou, float time_step, real_T 

*new_ro_est_tou, real_T *new_V_sca_est_tou, real_T *temp_new_V_sca_est_tou, 
real_T *temp_new_ro_est_tou) 

138 { 
139      
140     /*performs asynchronous double integration with a time step 
141      *equal to dT seconds and stores the results in a temp variable 
142      *to be transferred to the buffers after they have been 
143      *incremented*/ 
144     *temp_new_ro_est_tou = *new_ro_est_tou+ (*new_V_sca_est_tou +   
     k1*delta_ro_tou)*time_step; 
145     *temp_new_V_sca_est_tou=*new_V_sca_est_tou+ (k2*delta_ro_tou)*time_step; 
146 } 
147  
148  
149 /* Function: mdlInitializeSizes =========================================== 
150  * Abstract: 
151  *    Setup sizes of the various vectors. 
152  */ 
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153 static void mdlInitializeSizes(SimStruct *S) 
154 {     
155     ssSetNumSFcnParams(S, 3);  /* Number of expected parameters */ 
156     if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))  
157     { 
158         return; /* Parameter mismatch will be reported by Simulink */ 
159     } 
160  
161     ssSetNumContStates(S, 0);               /*defines 0 continuous states*/ 
162     ssSetNumDiscStates(S, 7);               /*defines 7 discrete state*/ 
163  
164     if (!ssSetNumInputPorts(S, 7)) return;  /*defines 7 input ports*/ 
165     ssSetInputPortWidth(S, 0, 1);           /*sets input 1 port size to 1*/ 
166     ssSetInputPortWidth(S, 1, 1);           /*sets input 2 port size to 1*/ 
167     ssSetInputPortWidth(S, 2, 1);           /*sets input 3 port size to 1*/ 
168     ssSetInputPortWidth(S, 3, 1);           /*sets input 4 port size to 1*/ 
169     ssSetInputPortWidth(S, 4, 1);           /*sets input 5 port size to 1*/ 
170     ssSetInputPortWidth(S, 5, 1);           /*sets input 6 port size to 1*/ 
171     ssSetInputPortWidth(S, 6, 1);           /*sets input 7 port size to 1*/ 
172     ssSetInputPortDirectFeedThrough(S, 0, 1); 
173     ssSetInputPortDirectFeedThrough(S, 1, 1); 
174     ssSetInputPortDirectFeedThrough(S, 2, 1); 
175     ssSetInputPortDirectFeedThrough(S, 3, 1); 
176     ssSetInputPortDirectFeedThrough(S, 4, 1); 
177     ssSetInputPortDirectFeedThrough(S, 5, 1); 
178     ssSetInputPortDirectFeedThrough(S, 6, 1); 
179          
180     if (!ssSetNumOutputPorts(S,4)) return; 
181     ssSetOutputPortWidth(S, 0, 1);       /*sets output port 1 width to 1*/ 
182     ssSetOutputPortWidth(S, 1, 1);       /*sets output port 2 width to 1*/ 
183     ssSetOutputPortWidth(S, 2, 1);       /*sets output port 3 width to 1*/ 
184     ssSetOutputPortWidth(S, 3, 1);       /*sets output port 4 width to 1*/    
185      
186     ssSetNumSampleTimes(    S, 1); 
187     ssSetNumRWork(          S, 3);    /*real vector*/ 
188     ssSetNumIWork(          S, 2);    /*integer vector*/ 
189     ssSetNumPWork(          S, 7);    /*pointer vector*/ 
190     ssSetNumModes(          S, 0);    /*mode vector*/ 
191     ssSetNumNonsampledZCs(  S, 0);    /*number of zero crossings*/ 
192  
193     /* Take care when specifying exception free code - see sfuntmpl_doc.c */ 
194     ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE); 
195 } 
196  
197  
198 /* Function: mdlInitializeSampleTimes ===================================== 
199  * Abstract: 
200  *    Discrete sample time of dT seconds and specify that we are doing 
201  *    function-calls on the 1st element of the 1st output port. 
202  */ 
203 static void mdlInitializeSampleTimes(SimStruct *S) 
204 { 
205     ssSetSampleTime(S, 0, dT);       /*sets sample time to dT seconds*/ 
206     ssSetOffsetTime(S, 0, 0.0);       /*indicates 0 offset time*/ 
207      
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208     ssSetCallSystemOutput(S,0);       /* call on first element */ 
209     ssSetModelReferenceSampleTimeDefaultInheritance(S); 
210 } 
211  
212  
213 /*Function: mdlStart =================================================== 
214 
215  *Abstract: 
216  *    This function sets up the variables passed between the function and 
216  *    the s-function. 
217  */ 
218 #define MDL_START 
219  
220 static void mdlStart(SimStruct *S) 
221 {     
222     int_T index, integrator_flag; 
223     real_T initial_position, initial_velocity, ro_optimize_start; 
224      
225     /*The real_T variables below denote the buffers used to store 
226      *velocity and position data over multiple iterations of the  
227      *s-function*/ 
228     real_T *velocity_data, *position_data; 
229     real_T *new_V_sca_est_tou, *new_ro_est_tou; 
230     real_T *x_PVNT_data, *y_PVNT_data, *z_PVNT_data; 
231      
232     /*The buffers are allocated enough memory to store 'MAX_INDEX' data 
233      *with each data space being 'real_T' size. The 'calloc' command also 
234      *initializes the buffers*/ 
235     velocity_data        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
236     position_data        = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
237     new_V_sca_est_tou  = (real_T *) calloc(MAX_INDEX, sizeof(real_T));     
238     new_ro_est_tou       = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
239     x_PVNT_data          = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
240     y_PVNT_data          = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
241     z_PVNT_data          = (real_T *) calloc(MAX_INDEX, sizeof(real_T)); 
242      
243     index = 0;                           /*initializes index to 0*/ 
244     integrator_flag = 0;                //sets integration reset flag to 0 
245     initial_velocity = 0.0;             //initializes position and velocity 
246     initial_position = 0.0;              //IC's to 0 
247     ro_optimize_start = 0.0; 
248  
249  
250     /*Sets the pointer work variables for the buffers*/ 
251     ssSetPWorkValue(S, 0, (real_T *)velocity_data); 
252     ssSetPWorkValue(S, 1, (real_T *)position_data); 
253     ssSetPWorkValue(S, 2, (real_T *)new_V_sca_est_tou); 
254     ssSetPWorkValue(S, 3, (real_T *)new_ro_est_tou); 
255     ssSetPWorkValue(S, 4, (real_T *)x_PVNT_data); 
256     ssSetPWorkValue(S, 5, (real_T *)y_PVNT_data); 
257     ssSetPWorkValue(S, 6, (real_T *)z_PVNT_data);     
258      
259     ssSetIWorkValue(S, 0, index);           /*sets the first integer work  
260                                                *value to the index variable*/ 
261      
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262     ssSetIWorkValue(S, 1, integrator_flag);  /*sets the second integer work 
263                                                  *value to the integrator flag*/ 
264      
265     ssSetRWorkValue(S, 0, initial_velocity);  /*sets the real work values*/ 
266     ssSetRWorkValue(S, 1, initial_position); 
267     ssSetRWorkValue(S, 2, ro_optimize_start); 
268 } 
269  
270  
271 /* Function: mdlOutputs ================================================= 
272  * Abstract: 
273  *    Issue ssCallSystemWithTid on 1st output element of 1st output port. 
274  */ 
275 static void mdlOutputs(SimStruct *S, int_T tid) 
276 { 
277     /*S-function input and output declarations*/ 
278     real_T               *ro_est          = ssGetRealDiscStates(S,0); 
279     real_T               *V_sca_est      = ssGetRealDiscStates(S,1); 
280     real_T               *PVNT            = ssGetRealDiscStates(S,2); 
281     real_T               *x_PVNT          = ssGetRealDiscStates(S,3); 
282     real_T               *y_PVNT          = ssGetRealDiscStates(S,4); 
283     real_T               *z_PVNT          = ssGetRealDiscStates(S,5); 
284     real_T               *clock           = ssGetRealDiscStates(S,6); 
285     InputRealPtrsType    ro_est_Ptrs      = ssGetInputPortRealSignalPtrs(S,0); 
286     InputRealPtrsType    V_sca_est_Ptrs = ssGetInputPortRealSignalPtrs(S,1); 
287     InputRealPtrsType    PVNT_Ptrs        = ssGetInputPortRealSignalPtrs(S,2); 
288     InputRealPtrsType    x_PVNT_Ptrs    = ssGetInputPortRealSignalPtrs(S,3); 
289     InputRealPtrsType    y_PVNT_Ptrs    = ssGetInputPortRealSignalPtrs(S,4); 
290     InputRealPtrsType    z_PVNT_Ptrs    = ssGetInputPortRealSignalPtrs(S,5); 
291     InputRealPtrsType    clock_Ptrs       = ssGetInputPortRealSignalPtrs(S,6); 
292     real_T               *TgtP_IC         = ssGetOutputPortRealSignal(S,1); 
293     real_T               *TgtV_IC         = ssGetOutputPortRealSignal(S,2); 
294     real_T               *integrator_reset = ssGetOutputPortRealSignal(S,3); 
295      
296     int_T index, integrator_flag; 
297     real_T initial_velocity, initial_position; 
298     real_T temp_new_V_sca_est_tou, temp_new_ro_est_tou; 
299  
300     /*buffer declarations for mdlOutputs*/ 
301     real_T *velocity_data, *position_data; 
302     real_T *new_V_sca_est_tou, *new_ro_est_tou; 
303     real_T *x_PVNT_data, *y_PVNT_data, *z_PVNT_data; 
304          
305     /*defines pointer to output file for forward Euler integration results*/ 
306     //FILE *Euler_output_data; 
307      
308     /*defines intermediate postion and velocity matrices*/ 
309     float delta_ro_tou = 0.0, time_index = 0.0; 
310     int i = 0;                    /*counter*/ 
311     int road_eq_selector = road_equation_selection;  /*picks which road  
312                                                          *equation is to be 
313                                                         *used*/ 
314     int reset_index = 0;    /*flag indicating and index reset to 0*/ 
315     double k1=0.5, k2=0.5;  /*sets integrator gains*/ 
316     float delay = 0.0, time_step = dT; 
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317  
318     /*optimization variables*/ 
319     real_T ro_star, ro_optimize_start; 
320      
321     /* 
322      * ssCallSystemWithTid is used to execute a function-call subsystem. The 
323      * 2nd argument is the element of the 1st output port index which 
324      * connected to the function-call subsystem. Function-call subsystems 
325      * can be driven by the first output port of s-function blocks. 
326      */ 
327      
328     UNUSED_ARG(tid); /* not used in single tasking mode */ 
329      
330     /*Retrieves the pointer work values for the buffers*/ 
331     velocity_data        = (real_T *)ssGetPWorkValue(S, 0); 
332     position_data        = (real_T *)ssGetPWorkValue(S, 1); 
333     new_V_sca_est_tou  = (real_T *)ssGetPWorkValue(S, 2); 
334     new_ro_est_tou       = (real_T *)ssGetPWorkValue(S, 3); 
335     x_PVNT_data          = (real_T *)ssGetPWorkValue(S, 4); 
336     y_PVNT_data          = (real_T *)ssGetPWorkValue(S, 5); 
337     z_PVNT_data          = (real_T *)ssGetPWorkValue(S, 6);     
338          
339     /*Retrieves integer and real work values*/ 
340     index                = ssGetIWorkValue(S,0); 
341     integrator_flag      = ssGetIWorkValue(S,1); 
342     initial_velocity     = ssGetRWorkValue(S,0); 
343     initial_position     = ssGetRWorkValue(S,1); 
344     ro_optimize_start    = ssGetRWorkValue(S,2); 
345      
346     /*creates .txt file for output results*/ 
347     //Euler_output_data = fopen("Euler_data_rf.txt", "w"); 
348      
349     /*Entire sequence is in an 'if' loop to ensure that there is no  
350      *overflow for the position and velocity arrays (defined with a maximum 
351      *of MAX_INDEX data points.)*/ 
352     if(index <= (int)MAX_INDEX) 
353     { 
354         TgtP_IC[0] = initial_position;  /*sets outputs to initial V and P*/ 
355         TgtV_IC[0] = initial_velocity; 
356          
357         integrator_reset[0] = integrator_flag;  /*sets output 3 to integration 
358                                                     *reset flag*/ 
359          
360         if(!ssCallSystemWithTid(S,0,tid))    /*calls system with task ID 1*/ 
361         { 
362             /* Error occurred which will be reported by Simulink */ 
363                 return; 
364         } 
365          
366         ro_est_Ptrs     = ssGetInputPortRealSignalPtrs(S,0);/*Gets inputs*/ 
367         V_sca_est_Ptrs  = ssGetInputPortRealSignalPtrs(S,1); 
368          
369         /*assigns the position and velocity data to the buffers*/ 
370         *position_data = (real_T)*ro_est_Ptrs[0]; 
371         *velocity_data = (real_T)*V_sca_est_Ptrs[0]; 
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372          
373         /*resets the initial velocity and position values*/ 
374         initial_velocity = ssSetRWorkValue(S, 0, (real_T)*V_sca_est_Ptrs[0]); 
375         initial_position = ssSetRWorkValue(S, 1, (real_T)*ro_est_Ptrs[0]); 
376          
377         /*resets the integrator reset to 0*/ 
378         integrator_flag = ssSetIWorkValue(S, 1, 0); 
379          
380         /*takes in x, y, and z coordinates from PVNT update*/ 
381         x_PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,3); 
382         y_PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,4); 
383         z_PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,5); 
384          
385         /*assigns coordinates to buffers*/ 
386         *x_PVNT_data = (real_T)*x_PVNT_Ptrs[0]; 
387         *y_PVNT_data = (real_T)*y_PVNT_Ptrs[0]; 
388         *z_PVNT_data = (real_T)*z_PVNT_Ptrs[0];         
389     } 
390      
391     if ((real_T)*PVNT_Ptrs[0] >= 0.99) 
392     /*indicates pulse is high (PVNT update present)*/ 
393     {              
394  
395         /*goes back delay/dT spaces in the PVNT position buffers to get the 
396          *actual PVNT position update (NOTE: index = delay/dT)*/         
397         x_PVNT_data = x_PVNT_data - index; 
398         y_PVNT_data = y_PVNT_data - index; 
399         z_PVNT_data = z_PVNT_data - index;         
400          
401   
402 PVNT_optimization (x_PVNT_data, y_PVNT_data, z_PVNT_data, 

ro_optimize_start, &ro_star, road_eq_selector); 
403          
404              
405         /*calls the estimated ro and velocity values at time tou from the 
406          *buffers*/ 
407         position_data = position_data - index; 
408         velocity_data = velocity_data - index; 
409          
410         /*calculates the difference between the ro_star update value and the 
411          *estimated ro value at time tou*/ 
412         delta_ro_tou = ro_star - *position_data; 
413          
414         /*sets up the initial conditions based on the ro input from the  
415          *PVNT update*/ 
416         *new_ro_est_tou = ro_star; 
417         *new_V_sca_est_tou = *velocity_data; 
418          
419         /*sets up time output for Euler_data file*/ 
420         delay = index; 
421         time_index = *clock_Ptrs[0] - (delay / dT); 
422          
423         for (i=0; i<index; i++)         /*increments counter from 0 to the 
424                                           *maximum value of the index*/ 
425         {        
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426             if (i != 0)                 /*allows normal integration after first iteration*/ 
427             { 
428                 delta_ro_tou = 0.0;                 
429             } 
430              
431 Euler_integration(k1, k2, delta_ro_tou, time_step, new_ro_est_tou, 

new_V_sca_est_tou, &temp_new_V_sca_est_tou, &temp_new_ro_est_tou); 
432          
433             /*increments the new_ro_est_tou and new_V_sca_est_tou buffer 
434              *pointers*/ 
435             new_ro_est_tou++; 
436             new_V_sca_est_tou++; 
437              
438             /*sets the now incremented buffers equal to the results from 
439              *the forward Euler integration*/ 
440             *new_ro_est_tou = temp_new_ro_est_tou; 
441             *new_V_sca_est_tou = temp_new_V_sca_est_tou; 
442              
443             /*prints Euler integration data to the output file for later 
444              *comparison to actual target data*/ 
445 //fprintf(Euler_output_data, "%f %f %f \n", time_index, (float)*new_ro_est_tou, 

(float)*new_V_sca_est_tou); 
446             time_index = time_index + dT; 
447         } 
448  
449         /*resets the initial velocity and position values that will go to  
450          *the open loop filter during the next function iteration.*/ 
451         initial_velocity = ssSetRWorkValue(S, 0, *new_V_sca_est_tou); 
452         initial_position = ssSetRWorkValue(S, 1, *new_ro_est_tou); 
453          
454         /*resets the initial ro value for use in the optimization loop*/ 
455         ro_optimize_start = ssSetRWorkValue(S, 2, initial_position); 
456                  
457         reset_index = 1;    /*triggers flag to indicate that an index 
458                               *reset is needed*/ 
459          
460         integrator_flag = ssSetIWorkValue(S, 1, 1);   /*triggers open loop 
461                                                         *integrator reset*/ 
462     } 
463          
464     if((index <= (int)MAX_INDEX) && (reset_index==0))   /*checks to see if flag is set*/ 
465     { 
466         velocity_data++;                        /*increments buffer pointers*/ 
467         position_data++; 
468         x_PVNT_data++; 
469         y_PVNT_data++; 
470         z_PVNT_data++; 
471         index = ssSetIWorkValue(S, 0, index+1);  /*increments index value*/ 
472     } 
473     else  
474     { 
475         new_ro_est_tou=new_ro_est_tou-index; 
476         new_V_sca_est_tou=new_V_sca_est_tou-index; 
477         index = ssSetIWorkValue(S, 0, 0);     /*resets index value to 0*/ 
478      } 
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478      
480     /*resets the pointer work values for the velocity_data and  
481      *position_data buffers*/ 
482     ssSetPWorkValue(S, 0, (real_T *)velocity_data); 
483     ssSetPWorkValue(S, 1, (real_T *)position_data); 
484     ssSetPWorkValue(S, 4, (real_T *)x_PVNT_data);     
485     ssSetPWorkValue(S, 5, (real_T *)y_PVNT_data);     
486     ssSetPWorkValue(S, 6, (real_T *)z_PVNT_data);     
487 } 
488  
489  
490 /* Function: mdlUpdate ================================================= 
491  * Abstract: 
492  *    Increment the state for next time around (i.e. a counter). 
493  */ 
494  
495 #define MDL_UPDATE 
496 static void mdlUpdate(SimStruct *S, int_T tid) 
497 { 
498          
499     UNUSED_ARG(tid); /* not used in single tasking mode */ 
500  
501 } 
502  
503  
504 /* Function: mdlTerminate =============================================== 
505  * Abstract: 
506  *    Required to have this routine. 
507 
508 static void mdlTerminate(SimStruct *S) 
509 { 
510     real_T *velocity_data       = ssGetPWorkValue(S, 0); 
511     real_T *position_data       = ssGetPWorkValue(S, 1); 
512     real_T *new_V_sca_est_tou   = ssGetPWorkValue(S, 2); 
513     real_T *new_ro_est_tou      = ssGetPWorkValue(S, 3); 
514     real_T *x_PVNT_data         = ssGetPWorkValue(S, 4);  
515     real_T *y_PVNT_data         = ssGetPWorkValue(S, 5); 
516     real_T *z_PVNT_data         = ssGetPWorkValue(S, 6); 
517      
518     //FILE *Euler_output_data; 
519      
520     UNUSED_ARG(S); /* unused input argument */ 
521      
522     /*releases data stored in buffers*/ 
523     free(velocity_data); 
524     free(position_data); 
525     free(new_V_sca_est_tou); 
526     free(new_ro_est_tou); 
527     free(x_PVNT_data); 
528     free(y_PVNT_data); 
529     free(z_PVNT_data);     
530      
531     /*closes Euler integration data output file*/ 
532     //fclose(Euler_output_data); 
533 } 
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534  
535 #ifdef  MATLAB_MEX_FILE     /* Is this file being compiled as a MEX-file? */ 
536 #include "simulink.c"        /* MEX-file interface mechanism */ 
537 #else 
538 #include "cg_sfun.h"        /* Code generation registration function */ 
539 #endif 
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